These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 28786633)

  • 1. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.
    Davis AOC; Saulnier PM; Karpiński M; Smith BJ
    Opt Express; 2017 May; 25(11):12804-12811. PubMed ID: 28786633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-fiber time-delay spectrometer for simultaneous spectral and temporal laser pulse characterization in the nanosecond range.
    Tiess T; Rothhardt M; Jäger M; Bartelt H
    Appl Opt; 2013 Feb; 52(6):1161-7. PubMed ID: 23434986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-assisted single-photon spectrograph.
    Avenhaus M; Eckstein A; Mosley PJ; Silberhorn C
    Opt Lett; 2009 Sep; 34(18):2873-5. PubMed ID: 19756134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independently tunable dual-wavelength fiber oscillator with synchronized pulsed emission based on a theta ring cavity and a fiber Bragg grating array.
    Tiess T; Becker M; Rothhardt M; Bartelt H; Jäger M
    Opt Express; 2017 Oct; 25(22):26393-26404. PubMed ID: 29092130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-correlation technique for dispersion characterization of chirped volume Bragg gratings.
    Andrusyak O; Canioni L; Cohanoschi I; Rotari E; Smirnov V; Venus G; Glebov L
    Appl Opt; 2009 Oct; 48(30):5786-92. PubMed ID: 19844316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum frequency translation of single-photon states in a photonic crystal fiber.
    McGuinness HJ; Raymer MG; McKinstrie CJ; Radic S
    Phys Rev Lett; 2010 Aug; 105(9):093604. PubMed ID: 20868160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity-referenced and temperature-independent curvature-sensing concept based on chirped fiber Bragg gratings.
    Romero R; Frazão O; Pereira DA; Salgado HM; Araújo FM; Ferreira LA
    Appl Opt; 2005 Jun; 44(18):3821-6. PubMed ID: 15989057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings.
    Eggleton BJ; Krug PA; Poladian L; Ahmed KA; Liu HF
    Opt Lett; 1994 Jun; 19(12):877-9. PubMed ID: 19844474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-low loss dispersion control with chirped transmissive fiber gratings.
    He T; Demas J; Ramachandran S
    Opt Lett; 2017 Jul; 42(13):2531-2534. PubMed ID: 28957277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave photonic integrator based on a multichannel fiber Bragg grating.
    Zhang J; Yao J
    Opt Lett; 2016 Jan; 41(2):273-6. PubMed ID: 26766692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.
    Zaske S; Lenhard A; Becher C
    Opt Express; 2011 Jun; 19(13):12825-36. PubMed ID: 21716525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of chromatic dispersion compensation in 10 Gbps SMF and 40 Gbps OTDM systems using a cascaded Gaussian linear apodized chirped fibre Bragg grating design.
    Nsengiyumva I; Mwangi E; Kamucha G
    Heliyon; 2022 Apr; 8(4):e09308. PubMed ID: 35520619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism.
    Liu Y; Yao J; Yang J
    Appl Opt; 2003 May; 42(13):2273-7. PubMed ID: 12737457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber-dispersive Raman spectrometer with single-photon sensitivity.
    Sidorova M; Pavlov SG; Semenov AD; Gensch M; Hübers HW
    Opt Express; 2021 Jun; 29(13):20941-20951. PubMed ID: 34266171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry.
    Saperstein RE; Alic N; Zamek S; Ikeda K; Slutsky B; Fainman Y
    Opt Express; 2007 Nov; 15(23):15464-79. PubMed ID: 19550832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable dispersion compensator based on uniform fiber Bragg grating and its application to tunable pulse repetition-rate multiplication.
    Han YG; Lee S
    Opt Express; 2005 Nov; 13(23):9224-9. PubMed ID: 19503122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2 ~ 5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating.
    Lee JH; Chang Y; Han YG; Kim S; Lee S
    Opt Express; 2004 Aug; 12(17):3900-5. PubMed ID: 19483924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings.
    Antipov S; Ams M; Williams RJ; Magi E; Withford MJ; Fuerbach A
    Opt Express; 2016 Jan; 24(1):30-40. PubMed ID: 26832235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-fiber tunable optical delay line.
    Caucheteur C; Mussot A; Bette S; Kudlinski A; Douay M; Louvergneaux E; Mégret P; Taki M; Gonz Lez-Herrāez M
    Opt Express; 2010 Feb; 18(3):3093-100. PubMed ID: 20174140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings.
    Shi W; Veerasubramanian V; Patel D; Plant DV
    Opt Lett; 2014 Feb; 39(3):701-3. PubMed ID: 24487903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.