These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Automating the Incremental Evolution of Controllers for Physical Robots. Faíña A; Jacobsen LT; Risi S Artif Life; 2017; 23(2):142-168. PubMed ID: 28513203 [TBL] [Abstract][Full Text] [Related]
3. Real-World Evolution of Robot Morphologies: A Proof of Concept. Jelisavcic M; de Carlo M; Hupkes E; Eustratiadis P; Orlowski J; Haasdijk E; Auerbach JE; Eiben AE Artif Life; 2017; 23(2):206-235. PubMed ID: 28513201 [TBL] [Abstract][Full Text] [Related]
4. Abstraction, Sensory-Motor Coordination, and the Reality Gap in Evolutionary Robotics. Scheper KYW; de Croon GCHE Artif Life; 2017; 23(2):124-141. PubMed ID: 28513202 [TBL] [Abstract][Full Text] [Related]
5. The utility of evolving simulated robot morphology increases with task complexity for object manipulation. Bongard J Artif Life; 2010; 16(3):201-23. PubMed ID: 20059328 [TBL] [Abstract][Full Text] [Related]
6. Reality-Assisted Evolution of Soft Robots through Large-Scale Physical Experimentation: A Review. Howison T; Hauser S; Hughes J; Iida F Artif Life; 2020; 26(4):484-506. PubMed ID: 33493077 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots. Vujovic V; Rosendo A; Brodbeck L; Iida F Artif Life; 2017; 23(2):169-185. PubMed ID: 28513207 [TBL] [Abstract][Full Text] [Related]
8. A Two Teraflop Swarm. Jones S; Studley M; Hauert S; Winfield AFT Front Robot AI; 2018; 5():11. PubMed ID: 33500898 [TBL] [Abstract][Full Text] [Related]
9. Evolution of adaptive synapses: robots with fast adaptive behavior in new environments. Urzelai J; Floreano D Evol Comput; 2001; 9(4):495-524. PubMed ID: 11709106 [TBL] [Abstract][Full Text] [Related]
10. EMERGE Modular Robot: A Tool for Fast Deployment of Evolved Robots. Moreno R; Faiña A Front Robot AI; 2021; 8():699814. PubMed ID: 34291092 [TBL] [Abstract][Full Text] [Related]
11. Evolving a Behavioral Repertoire for a Walking Robot. Cully A; Mouret JB Evol Comput; 2016; 24(1):59-88. PubMed ID: 25585055 [TBL] [Abstract][Full Text] [Related]
13. Morphological Evolution of Physical Robots through Model-Free Phenotype Development. Brodbeck L; Hauser S; Iida F PLoS One; 2015; 10(6):e0128444. PubMed ID: 26091255 [TBL] [Abstract][Full Text] [Related]
14. A review of training research and virtual reality simulators for the da Vinci surgical system. Liu M; Curet M Teach Learn Med; 2015; 27(1):12-26. PubMed ID: 25584468 [TBL] [Abstract][Full Text] [Related]
15. Scalable co-optimization of morphology and control in embodied machines. Cheney N; Bongard J; SunSpiral V; Lipson H J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29899155 [TBL] [Abstract][Full Text] [Related]
16. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots. Duarte M; Costa V; Gomes J; Rodrigues T; Silva F; Oliveira SM; Christensen AL PLoS One; 2016; 11(3):e0151834. PubMed ID: 26999614 [TBL] [Abstract][Full Text] [Related]
17. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot. Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713 [TBL] [Abstract][Full Text] [Related]
18. Self-organisation and communication in groups of simulated and physical robots. Trianni V; Dorigo M Biol Cybern; 2006 Sep; 95(3):213-31. PubMed ID: 16821036 [TBL] [Abstract][Full Text] [Related]
19. The trade-off between morphology and control in the co-optimized design of robots. Rosendo A; von Atzigen M; Iida F PLoS One; 2017; 12(10):e0186107. PubMed ID: 29023482 [TBL] [Abstract][Full Text] [Related]
20. Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes. Weel B; D'Angelo M; Haasdijk E; Eiben AE Artif Life; 2017; 23(1):80-104. PubMed ID: 28140628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]