These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28786727)

  • 41. When a robot is social: spatial arrangements and multimodal semiotic engagement in the practice of social robotics.
    Alac M; Movellan J; Tanaka F
    Soc Stud Sci; 2011 Dec; 41(6):893-926. PubMed ID: 22400423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.
    Ferreira JP; Crisóstomo MM; Coimbra AP
    IEEE Trans Neural Netw; 2009 Dec; 20(12):1885-97. PubMed ID: 19840908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads.
    Lee GI; Lee MR
    Surg Endosc; 2018 Jan; 32(1):62-72. PubMed ID: 28634632
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery.
    Moglia A; Ferrari V; Morelli L; Ferrari M; Mosca F; Cuschieri A
    Eur Urol; 2016 Jun; 69(6):1065-80. PubMed ID: 26433570
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Artificial endocrine controller for power management in robotic systems.
    Sauzé C; Neal M
    IEEE Trans Neural Netw Learn Syst; 2013 Dec; 24(12):1973-85. PubMed ID: 24805216
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robots that can adapt like animals.
    Cully A; Clune J; Tarapore D; Mouret JB
    Nature; 2015 May; 521(7553):503-7. PubMed ID: 26017452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The relevance of low-fidelity virtual reality simulators compared with other learning methods in basic endovascular skills training.
    Aeckersberg G; Gkremoutis A; Schmitz-Rixen T; Kaiser E
    J Vasc Surg; 2019 Jan; 69(1):227-235. PubMed ID: 30579447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors.
    Quinn M; Smith L; Mayley G; Husbands P
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2321-43. PubMed ID: 14599322
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Active vision and receptive field development in evolutionary robots.
    Floreano D; Suzuki M; Mattiussi D
    Evol Comput; 2005; 13(4):527-44. PubMed ID: 16297282
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Role of Morphological Variation in Evolutionary Robotics: Maximizing Performance and Robustness.
    Carvalho JT; Nolfi S
    Evol Comput; 2024 Jun; 32(2):125-142. PubMed ID: 37390220
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Patient-specific surgical simulator for the pre-operative planning of single-incision laparoscopic surgery with bimanual robots.
    Turini G; Moglia A; Ferrari V; Ferrari M; Mosca F
    Comput Aided Surg; 2012; 17(3):103-12. PubMed ID: 22489935
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.
    Lee DH; Choi J; Park JW; Bach DJ; Song SJ; Kim YH; Jo Y; Sun K
    ASAIO J; 2009; 55(1):83-5. PubMed ID: 19092664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolutionary Robotics Controllers with Proprioception Facilitated by Neural-Network-Based Simulators.
    Phillips A; du Plessis MC
    Artif Life; 2020; 26(4):455-483. PubMed ID: 33493078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distributed coordination of simulated robots based on self-organization.
    Baldassarre G; Parisi D; Nolfi S
    Artif Life; 2006; 12(3):289-311. PubMed ID: 16859442
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cracking the egg: virtual embryogenesis of real robots.
    Cussat-Blanc S; Pollack J
    Artif Life; 2014; 20(3):361-83. PubMed ID: 24730763
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Learning compliant manipulation through kinesthetic and tactile human-robot interaction.
    Kronander K; Billard A
    IEEE Trans Haptics; 2014; 7(3):367-80. PubMed ID: 25248219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robot Learning From Randomized Simulations: A Review.
    Muratore F; Ramos F; Turk G; Yu W; Gienger M; Peters J
    Front Robot AI; 2022; 9():799893. PubMed ID: 35494543
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An intrinsically safe mechanism for physically coupling humans with robots.
    O'Neill G; Patel H; Artemiadis P
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650510. PubMed ID: 24187325
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three generations of automatically designed robots.
    Pollack JB; Lipson H; Hornby G; Funes P
    Artif Life; 2001; 7(3):215-23. PubMed ID: 11712955
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the Evolution of Behaviors through Embodied Imitation.
    Erbas MD; Bull L; Winfield AF
    Artif Life; 2015; 21(2):141-65. PubMed ID: 25951200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.