These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2878673)

  • 21. Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells.
    Ascher P; Large WA; Rang HP
    J Physiol; 1979 Oct; 295():139-70. PubMed ID: 42780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavioral evidence linking opioid-sensitive GABAergic neurons in the ventrolateral periaqueductal gray to morphine tolerance.
    Morgan MM; Clayton CC; Lane DA
    Neuroscience; 2003; 118(1):227-32. PubMed ID: 12676152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wild running elicited by microinjections of bicuculline or morphine into the inferior colliculus of rats: lack of effect of periaqueductal gray lesions.
    Bagri A; Di Scala G; Sandner G
    Pharmacol Biochem Behav; 1992 Apr; 41(4):727-32. PubMed ID: 1594640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excitatory amino acid receptors in the periaqueductal gray mediate the cardiovascular response evoked by activation of dorsomedial hypothalamic neurons.
    da Silva LG; Menezes RC; Villela DC; Fontes MA
    Neuroscience; 2006; 139(3):1129-39. PubMed ID: 16458440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GABA mediation of the anti-aversive action of minor tranquilizers.
    Brandão ML; de Aguiar JC; Graeff FG
    Pharmacol Biochem Behav; 1982 Mar; 16(3):397-402. PubMed ID: 6123116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Longitudinal neuronal organization of defensive reactions in the midbrain periaqueductal gray region of the rat.
    Depaulis A; Keay KA; Bandler R
    Exp Brain Res; 1992; 90(2):307-18. PubMed ID: 1397145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.
    Vianna DM; Borelli KG; Ferreira-Netto C; Macedo CE; Brandão ML
    Brain Res Bull; 2003 Dec; 62(3):179-89. PubMed ID: 14698351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioral effects of neurotensin applied to periventricular structures of rats.
    Da-Silva SL; Brandäo ML; Tomaz C
    Braz J Med Biol Res; 1989; 22(6):711-5. PubMed ID: 2620181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Marked up-regulation of the beta-bungarotoxin site in adrenal chromaffin cells by specific nicotinic antagonists.
    Quik M; Geertsen S; Trifaró JM
    Mol Pharmacol; 1987 Apr; 31(4):385-91. PubMed ID: 3574287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ventrolateral periaqueductal gray matter and the control of tonic immobility.
    Monassi CR; Leite-Panissi CR; Menescal-de-Oliveira L
    Brain Res Bull; 1999 Oct; 50(3):201-8. PubMed ID: 10566982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Presynaptic nicotinic acetylcholine receptors enhance GABAergic synaptic transmission in rat periaqueductal gray neurons.
    Nakamura M; Jang IS
    Eur J Pharmacol; 2010 Aug; 640(1-3):178-84. PubMed ID: 20465999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of direct periaqueductal grey administration of a cannabinoid receptor agonist on nociceptive and aversive responses in rats.
    Finn DP; Jhaveri MD; Beckett SR; Roe CH; Kendall DA; Marsden CA; Chapman V
    Neuropharmacology; 2003 Oct; 45(5):594-604. PubMed ID: 12941373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The site of action of trimethaphan-induced neuromuscular blockade in isolated rat and frog muscle.
    Nakamura K; Hatano Y; Mori K
    Acta Anaesthesiol Scand; 1988 Feb; 32(2):125-30. PubMed ID: 2894740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of NMDA receptors in hypothalamic facilitation of feline defensive rage elicited from the midbrain periaqueductal gray.
    Lu CL; Shaikh MB; Siegel A
    Brain Res; 1992 May; 581(1):123-32. PubMed ID: 1354005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of pretentorial periaqueductal gray matter neurons mediating intraspecific defensive behaviors in the rat by microinjections of kainic acid.
    Depaulis A; Bandler R; Vergnes M
    Brain Res; 1989 May; 486(1):121-32. PubMed ID: 2720424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of chemical stimulation in the periaqueductal gray on vocalization in the squirrel monkey.
    Lu CL; Jürgens U
    Brain Res Bull; 1993; 32(2):143-51. PubMed ID: 8102315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscarinic modulation of synaptic transmission via endocannabinoid signalling in the rat midbrain periaqueductal gray.
    Lau BK; Vaughan CW
    Mol Pharmacol; 2008 Nov; 74(5):1392-8. PubMed ID: 18678620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GABA modulation of the defense reaction induced by brain electrical stimulation.
    Schenberg LC; De Aguiar JC; Graeff FG
    Physiol Behav; 1983 Oct; 31(4):429-37. PubMed ID: 6318241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conditioned place aversion produced by microinjections of semicarbazide into the periaqueductal gray of the rat.
    Di Scala G; Sandner G
    Brain Res; 1989 Mar; 483(1):91-7. PubMed ID: 2706514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation.
    Fardin V; Oliveras JL; Besson JM
    Brain Res; 1984 Jul; 306(1-2):125-39. PubMed ID: 6466968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.