These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28786751)

  • 21. Covalent interactions between lignin and hemicelluloses in plant secondary cell walls.
    Terrett OM; Dupree P
    Curr Opin Biotechnol; 2019 Apr; 56():97-104. PubMed ID: 30423528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability.
    Grabber JH; Schatz PF; Kim H; Lu F; Ralph J
    BMC Plant Biol; 2010 Jun; 10():114. PubMed ID: 20565789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.
    Mélida H; Largo-Gosens A; Novo-Uzal E; Santiago R; Pomar F; García P; García-Angulo P; Acebes JL; Álvarez J; Encina A
    J Integr Plant Biol; 2015 Apr; 57(4):357-72. PubMed ID: 25735403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural hypolignification is associated with extensive oligolignol accumulation in flax stems.
    Huis R; Morreel K; Fliniaux O; Lucau-Danila A; Fénart S; Grec S; Neutelings G; Chabbert B; Mesnard F; Boerjan W; Hawkins S
    Plant Physiol; 2012 Apr; 158(4):1893-915. PubMed ID: 22331411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures.
    Hano C; Addi M; Bensaddek L; Crônier D; Baltora-Rosset S; Doussot J; Maury S; Mesnard F; Chabbert B; Hawkins S; Lainé E; Lamblin F
    Planta; 2006 Apr; 223(5):975-89. PubMed ID: 16292660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone.
    Wilkerson CG; Mansfield SD; Lu F; Withers S; Park JY; Karlen SD; Gonzales-Vigil E; Padmakshan D; Unda F; Rencoret J; Ralph J
    Science; 2014 Apr; 344(6179):90-3. PubMed ID: 24700858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly.
    Liu CJ
    Mol Plant; 2012 Mar; 5(2):304-17. PubMed ID: 22307199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cell biology of lignification in higher plants.
    Barros J; Serk H; Granlund I; Pesquet E
    Ann Bot; 2015 Jun; 115(7):1053-74. PubMed ID: 25878140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monolignol export by diffusion down a polymerization-induced concentration gradient.
    Perkins ML; Schuetz M; Unda F; Chen KT; Bally MB; Kulkarni JA; Yan Y; Pico J; Castellarin SD; Mansfield SD; Samuels AL
    Plant Cell; 2022 Apr; 34(5):2080-2095. PubMed ID: 35167693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of novel lignin in biomass crops.
    Vanholme R; Morreel K; Darrah C; Oyarce P; Grabber JH; Ralph J; Boerjan W
    New Phytol; 2012 Dec; 196(4):978-1000. PubMed ID: 23035778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lignification in the flax stem: evidence for an unusual lignin in bast fibers.
    Day A; Ruel K; Neutelings G; Crônier D; David H; Hawkins S; Chabbert B
    Planta; 2005 Oct; 222(2):234-45. PubMed ID: 15968509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydroxycinnamate conjugates as potential monolignol replacements: in vitro lignification and cell wall studies with rosmarinic acid.
    Tobimatsu Y; Elumalai S; Grabber JH; Davidson CL; Pan X; Ralph J
    ChemSusChem; 2012 Apr; 5(4):676-86. PubMed ID: 22359379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lignification in plant cell walls.
    Ros Barceló A
    Int Rev Cytol; 1997; 176():87-132. PubMed ID: 9394918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequestration and transport of lignin monomeric precursors.
    Liu CJ; Miao YC; Zhang KW
    Molecules; 2011 Jan; 16(1):710-27. PubMed ID: 21245806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification.
    Eudes A; George A; Mukerjee P; Kim JS; Pollet B; Benke PI; Yang F; Mitra P; Sun L; Cetinkol OP; Chabout S; Mouille G; Soubigou-Taconnat L; Balzergue S; Singh S; Holmes BM; Mukhopadhyay A; Keasling JD; Simmons BA; Lapierre C; Ralph J; Loqué D
    Plant Biotechnol J; 2012 Jun; 10(5):609-20. PubMed ID: 22458713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignin engineering.
    Vanholme R; Morreel K; Ralph J; Boerjan W
    Curr Opin Plant Biol; 2008 Jun; 11(3):278-85. PubMed ID: 18434238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. REPRISAL: mapping lignification dynamics using chemistry, data segmentation, and ratiometric analysis.
    Morel O; Lion C; Neutelings G; Stefanov J; Baldacci-Cresp F; Simon C; Biot C; Hawkins S; Spriet C
    Plant Physiol; 2022 Feb; 188(2):816-830. PubMed ID: 34687294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lignification: different mechanisms for a versatile polymer.
    Voxeur A; Wang Y; Sibout R
    Curr Opin Plant Biol; 2015 Feb; 23():83-90. PubMed ID: 25449731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell culture systems: invaluable tools to investigate lignin formation and cell wall properties.
    Pesquet E; Wagner A; Grabber JH
    Curr Opin Biotechnol; 2019 Apr; 56():215-222. PubMed ID: 30849592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemistry and molecular biology of lignification.
    Boudet AM; Lapierre C; Grima-Pettenati J
    New Phytol; 1995 Feb; 129(2):203-236. PubMed ID: 33874561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.