These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28787051)

  • 1. A new on-surface synthetic pathway to 5-armchair graphene nanoribbons on Cu(111) surfaces.
    Sun K; Ji P; Zhang H; Niu K; Li L; Chen A; Li Q; Müllen K; Chi L
    Faraday Discuss; 2017 Oct; 204():297-305. PubMed ID: 28787051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Surface Synthesis of 8- and 10-Armchair Graphene Nanoribbons.
    Sun K; Ji P; Zhang J; Wang J; Li X; Xu X; Zhang H; Chi L
    Small; 2019 Apr; 15(15):e1804526. PubMed ID: 30891917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of armchair graphene nanoribbons from the 10,10'-dibromo-9,9'-bianthracene molecules on Ag(111): the role of organometallic intermediates.
    Simonov KA; Generalov AV; Vinogradov AS; Svirskiy GI; Cafolla AA; McGuinness C; Taketsugu T; Lyalin A; Mårtensson N; Preobrajenski AB
    Sci Rep; 2018 Feb; 8(1):3506. PubMed ID: 29472611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dense monolayer films of atomically precise graphene nanoribbons on metallic substrates enabled by direct contact transfer of molecular precursors.
    Teeter JD; Costa PS; Zahl P; Vo TH; Shekhirev M; Xu W; Zeng XC; Enders A; Sinitskii A
    Nanoscale; 2017 Dec; 9(47):18835-18844. PubMed ID: 29177282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purely Armchair or Partially Chiral: Noncontact Atomic Force Microscopy Characterization of Dibromo-Bianthryl-Based Graphene Nanoribbons Grown on Cu(111).
    Sánchez-Sánchez C; Dienel T; Deniz O; Ruffieux P; Berger R; Feng X; Müllen K; Fasel R
    ACS Nano; 2016 Aug; 10(8):8006-11. PubMed ID: 27428831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality control of on-surface-synthesised seven-atom wide armchair graphene nanoribbons.
    Ishii A; Shiotari A; Sugimoto Y
    Nanoscale; 2020 Mar; 12(12):6651-6657. PubMed ID: 32175533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral Fusion of Chemical Vapor Deposited N = 5 Armchair Graphene Nanoribbons.
    Chen Z; Wang HI; Bilbao N; Teyssandier J; Prechtl T; Cavani N; Tries A; Biagi R; De Renzi V; Feng X; Kläui M; De Feyter S; Bonn M; Narita A; Müllen K
    J Am Chem Soc; 2017 Jul; 139(28):9483-9486. PubMed ID: 28650622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N = 9 Armchair Graphene Nanoribbons.
    Chen Z; Wang HI; Teyssandier J; Mali KS; Dumslaff T; Ivanov I; Zhang W; Ruffieux P; Fasel R; Räder HJ; Turchinovich D; De Feyter S; Feng X; Kläui M; Narita A; Bonn M; Müllen K
    J Am Chem Soc; 2017 Mar; 139(10):3635-3638. PubMed ID: 28248492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons.
    Li G; Yoon KY; Zhong X; Wang J; Zhang R; Guest JR; Wen J; Zhu XY; Dong G
    Nat Commun; 2018 Apr; 9(1):1687. PubMed ID: 29703958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Narrow Low-Bandgap Graphene Nanoribbons from Bromoperylenes-Synthesis and Terahertz-Spectroscopy.
    Jänsch D; Ivanov I; Zagranyarski Y; Duznovic I; Baumgarten M; Turchinovich D; Li C; Bonn M; Müllen K
    Chemistry; 2017 Apr; 23(20):4870-4875. PubMed ID: 28318065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous transport properties in boron and phosphorus co-doped armchair graphene nanoribbons.
    Kim HS; Kim SS; Kim HS; Kim YH
    Nanotechnology; 2016 Nov; 27(47):47LT01. PubMed ID: 27782001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth Optimization and Device Integration of Narrow-Bandgap Graphene Nanoribbons.
    Borin Barin G; Sun Q; Di Giovannantonio M; Du CZ; Wang XY; Llinas JP; Mutlu Z; Lin Y; Wilhelm J; Overbeck J; Daniels C; Lamparski M; Sahabudeen H; Perrin ML; Urgel JI; Mishra S; Kinikar A; Widmer R; Stolz S; Bommert M; Pignedoli C; Feng X; Calame M; Müllen K; Narita A; Meunier V; Bokor J; Fasel R; Ruffieux P
    Small; 2022 Aug; 18(31):e2202301. PubMed ID: 35713270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottom-Up Preparation of Twisted Graphene Nanoribbons by Cu-Catalyzed Deoxygenative Coupling.
    Gao Y; Hua X; Jiang W; Sun CL; Yuan C; Liu Z; Zhang HL; Shao X
    Angew Chem Int Ed Engl; 2022 Nov; 61(44):e202210924. PubMed ID: 36098932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.
    Ryou J; Park J; Kim G; Hong S
    J Phys Condens Matter; 2017 Jun; 29(24):245301. PubMed ID: 28443604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular-Scale Investigation of the Thermal and Chemical Stability of Monolayer PTCDA on Cu(111) and Cu(110).
    Gu C; Zhang JL; Sun S; Lian X; Ma Z; Mao H; Guo L; Wang Y; Chen W
    ACS Appl Mater Interfaces; 2020 May; 12(19):22327-22334. PubMed ID: 32314565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces.
    Kolmer M; Steiner AK; Izydorczyk I; Ko W; Engelund M; Szymonski M; Li AP; Amsharov K
    Science; 2020 Jul; 369(6503):571-575. PubMed ID: 32586951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N=8 Armchair Graphene Nanoribbons: Solution Synthesis and High Charge Carrier Mobility.
    Yao X; Zhang H; Kong F; Hinaut A; Pawlak R; Okuno M; Graf R; Horton PN; Coles SJ; Meyer E; Bogani L; Bonn M; Wang HI; Müllen K; Narita A
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202312610. PubMed ID: 37750665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy.
    Simonov KA; Vinogradov NA; Vinogradov AS; Generalov AV; Zagrebina EM; Svirskiy GI; Cafolla AA; Carpy T; Cunniffe JP; Taketsugu T; Lyalin A; Mårtensson N; Preobrajenski AB
    ACS Nano; 2015 Sep; 9(9):8997-9011. PubMed ID: 26301684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.