These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28787141)

  • 1. A Chemoselective Rapid Azo-Coupling Reaction (CRACR) for Unclickable Bioconjugation.
    Addy PS; Erickson SB; Italia JS; Chatterjee A
    J Am Chem Soc; 2017 Aug; 139(34):11670-11673. PubMed ID: 28787141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeling Proteins at Site-Specifically Incorporated 5-Hydroxytryptophan Residues Using a Chemoselective Rapid Azo-Coupling Reaction.
    Addy PS; Erickson SB; Italia JS; Chatterjee A
    Methods Mol Biol; 2019; 2033():239-251. PubMed ID: 31332758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A "Quenchergenic" Chemoselective Protein Labeling Strategy.
    Addy PS; Zheng Y; Italia JS; Chatterjee A
    Chembiochem; 2019 Jul; 20(13):1659-1663. PubMed ID: 30740850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Oxidative Bioconjugation Strategy Targeted to a Genetically Encoded 5-Hydroxytryptophan.
    Sarathi Addy P; Italia JS; Chatterjee A
    Chembiochem; 2018 Jul; 19(13):1375-1378. PubMed ID: 29644794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoredox-Catalyzed Labeling of Hydroxyindoles with Chemoselectivity (PhotoCLIC) for Site-Specific Protein Bioconjugation.
    Singha Roy SJ; Loynd C; Jewel D; Canarelli SE; Ficaretta ED; Pham QA; Weerapana E; Chatterjee A
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202300961. PubMed ID: 37219923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical labelling of hydroxyindoles with chemoselectivity for site-specific protein bioconjugation.
    Loynd C; Singha Roy SJ; Ovalle VJ; Canarelli SE; Mondal A; Jewel D; Ficaretta ED; Weerapana E; Chatterjee A
    Nat Chem; 2024 Mar; 16(3):389-397. PubMed ID: 38082177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically encoded click chemistry for single-molecule FRET of proteins.
    Tyagi S; Lemke EA
    Methods Cell Biol; 2013; 113():169-87. PubMed ID: 23317903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHOXI: A High Quantum Yield, Solvent-Sensitive Blue Fluorescent 5-Hydroxytryptophan Derivative Synthesized within Ten Minutes under Aqueous, Ambient Conditions.
    Grigoryan A; Eisenberg AS; Juszczak LJ
    J Phys Chem B; 2017 Aug; 121(30):7256-7266. PubMed ID: 28686023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 2: Peptide Tags and Unnatural Amino Acids.
    Adumeau P; Sharma SK; Brent C; Zeglis BM
    Mol Imaging Biol; 2016 Apr; 18(2):153-65. PubMed ID: 26754791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Visible and Near-Infrared Light Activatable Diazocoumarin Probe for Fluorogenic Protein Labeling in Living Cells.
    Dai SY; Yang D
    J Am Chem Soc; 2020 Oct; 142(40):17156-17166. PubMed ID: 32870680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity and Selectivity Principles in Native Protein Bioconjugation.
    Adakkattil R; Thakur K; Rai V
    Chem Rec; 2021 Aug; 21(8):1941-1956. PubMed ID: 34184826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical tags for site-specific fluorescent labeling of biomolecules.
    Freidel C; Kaloyanova S; Peneva K
    Amino Acids; 2016 Jun; 48(6):1357-72. PubMed ID: 26969255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic code expansion enabled site-specific dual-color protein labeling: superresolution microscopy and beyond.
    Nikić I; Lemke EA
    Curr Opin Chem Biol; 2015 Oct; 28():164-73. PubMed ID: 26302384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.
    Baalmann M; Best M; Wombacher R
    Methods Mol Biol; 2018; 1728():365-387. PubMed ID: 29405010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-Controlled Chemoselective Rapid Azo-Coupling Reaction (CRACR) Enables Global Profiling of Serotonylation Proteome in Cancer Cells.
    Zhang N; Wu J; Gao S; Peng H; Li H; Gibson C; Wu S; Zhu J; Zheng Q
    J Proteome Res; 2024 Oct; 23(10):4457-4466. PubMed ID: 39208062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiometal-Containing Aryl Diazonium Salts for Chemoselective Bioconjugation of Tyrosine Residues.
    Leier S; Richter S; Bergmann R; Wuest M; Wuest F
    ACS Omega; 2019 Dec; 4(26):22101-22107. PubMed ID: 31891090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New fluorescent symmetrically substituted perylene-3,4,9,10-dianhydride-azohybrid dyes: synthesis and spectroscopic studies.
    Saeed A; Shabir G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():7-12. PubMed ID: 24914994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for observing proteins in vivo using a small fluorescent label and multiphoton imaging.
    Botchway SW; Barba I; Jordan R; Harmston R; Haggie PM; Williams SP; Fulton AM; Parker AW; Brindle KM
    Biochem J; 2005 Sep; 390(Pt 3):787-90. PubMed ID: 15946123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry.
    George JT; Srivatsan SG
    Methods; 2017 May; 120():28-38. PubMed ID: 28215631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of oxidative coupling strategies for site-selective protein modification.
    ElSohly AM; Francis MB
    Acc Chem Res; 2015 Jul; 48(7):1971-8. PubMed ID: 26057118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.