These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28787165)

  • 1. Hydrogen and Hydrocarbon Gases, Polycyclic Aromatic Hydrocarbons, and Amorphous Carbon Produced by Multiple Shock Compression of Liquid Benzene up to 27.4 GPa.
    Mimura K; Nishida T
    J Phys Chem A; 2017 Aug; 121(34):6471-6480. PubMed ID: 28787165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic density functional theory analysis of direct methane conversion into ethylene and aromatic hydrocarbons catalyzed by Mo
    Yin F; Li MR; Wang GC
    Phys Chem Chem Phys; 2017 Aug; 19(33):22243-22255. PubMed ID: 28799585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of coronene at high temperature and pressure.
    Jennings E; Montgomery W; Lerch P
    J Phys Chem B; 2010 Dec; 114(48):15753-8. PubMed ID: 21067207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction dynamics of phenyl radicals in extreme environments: a crossed molecular beam study.
    Gu X; Kaiser RI
    Acc Chem Res; 2009 Feb; 42(2):290-302. PubMed ID: 19053235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition of benzene in the RF plasma environment. Part I. Formation of gaseous products and carbon depositions.
    Shih SI; Lin TC; Shih M
    J Hazard Mater; 2004 Dec; 116(3):239-48. PubMed ID: 15601617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of amorphous organic carbon/water partition coefficients, subcooled aqueous solubilities, and n-octanol/water distribution coefficients of alkylbenzenes and polycyclic aromatic hydrocarbons.
    van Noort PC
    Chemosphere; 2009 Feb; 74(8):1018-23. PubMed ID: 19091377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Changes in Liquid Benzene Multiply Shock Compressed to 25 GPa.
    Root S; Gupta YM
    J Phys Chem A; 2009 Feb; 113(7):1268-77. PubMed ID: 19170559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemistry through cocrystals: pressure-induced polymerization of C
    Ward MD; Huang HT; Zhu L; Biswas A; Popov D; Badding JV; Strobel TA
    Phys Chem Chem Phys; 2018 Mar; 20(10):7282-7294. PubMed ID: 29485162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation mechanism of polycyclic aromatic hydrocarbons in benzene combustion: Quantum chemical molecular dynamics simulations.
    Saha B; Irle S; Morokuma K
    J Chem Phys; 2010 Jun; 132(22):224303. PubMed ID: 20550393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of fundamental sp, sp2, and sp3 hydrocarbon radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Koshi M
    Anal Chem; 2012 Jun; 84(11):5007-16. PubMed ID: 22582767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of high-pressure Raman intensity behavior of aromatic hydrocarbons: benzene, biphenyl and naphthalene.
    Zhou M; Wang K; Men Z; Gao S; Li Z; Sun C
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():526-31. PubMed ID: 22842347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-induced oligomerization of benzene at room temperature as a precursory reaction of amorphization.
    Shinozaki A; Mimura K; Kagi H; Komatu K; Noguchi N; Gotou H
    J Chem Phys; 2014 Aug; 141(8):084306. PubMed ID: 25173013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pressure on heterocyclic compounds: pyrimidine and s-triazine.
    Li S; Li Q; Xiong L; Li X; Li W; Cui W; Liu R; Liu J; Yang K; Liu B; Zou B
    J Chem Phys; 2014 Sep; 141(11):114902. PubMed ID: 25240367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addition of one and two units of C2H to styrene: a theoretical study of the C10H9 and C12H9 systems and implications toward growth of polycyclic aromatic hydrocarbons at low temperatures.
    Landera A; Kaiser RI; Mebel AM
    J Chem Phys; 2011 Jan; 134(2):024302. PubMed ID: 21241094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of hydrocarbon content of a reforming gas by using a hydrogenation catalyst.
    Inoue K; Kawamoto K
    Chemosphere; 2010 Jan; 78(5):599-603. PubMed ID: 20022077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of naphthalene, indene, and benzene from cyclopentadiene pyrolysis: a DFT study.
    Wang D; Violi A; Kim DH; Mullholland JA
    J Phys Chem A; 2006 Apr; 110(14):4719-25. PubMed ID: 16599439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon clusters formed from shocked benzene.
    Dattelbaum DM; Watkins EB; Firestone MA; Huber RC; Gustavsen RL; Ringstrand BS; Coe JD; Podlesak D; Gleason AE; Lee HJ; Galtier E; Sandberg RL
    Nat Commun; 2021 Sep; 12(1):5202. PubMed ID: 34471110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposition of benzene in the RF plasma environment. Part II. Formation of polycyclic aromatic hydrocarbons.
    Shih SI; Lin TC; Shih M
    J Hazard Mater; 2005 Jan; 117(2-3):149-59. PubMed ID: 15629574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CH/pi interactions in methane clusters with polycyclic aromatic hydrocarbons.
    Tsuzuki S; Honda K; Fujii A; Uchimaru T; Mikami M
    Phys Chem Chem Phys; 2008 May; 10(19):2860-5. PubMed ID: 18465004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.
    Peukert SL; Labbe NJ; Sivaramakrishnan R; Michael JV
    J Phys Chem A; 2013 Oct; 117(40):10228-38. PubMed ID: 23968575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.