These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28787476)

  • 1. Simulation Analysis of Linear Quadratic Regulator Control of Sagittal-Plane Human Walking-Implications for Exoskeletons.
    Nataraj R; van den Bogert AJ
    J Biomech Eng; 2017 Oct; 139(10):. PubMed ID: 28787476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance comparison of structured [Formula: see text] based looptune and LQR for a 4-DOF robotic manipulator.
    Asghar A; Iqbal M; Khaliq A; Rehman SU; Iqbal J
    PLoS One; 2022; 17(4):e0266728. PubMed ID: 35404940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback-Error Learning for time-effective gait trajectory tracking in wearable exoskeletons.
    Figueiredo J; Fernandes PN; Moreno JC; Santos CP
    Anat Rec (Hoboken); 2023 Apr; 306(4):728-740. PubMed ID: 35869906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust LQR-Based Neural-Fuzzy Tracking Control for a Lower Limb Exoskeleton System with Parametric Uncertainties and External Disturbances.
    Narayan J; Dwivedy SK
    Appl Bionics Biomech; 2021; 2021():5573041. PubMed ID: 34194541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase resetting and intermittent control at the edge of stability in a simple biped model generates 1/f-like gait cycle variability.
    Fu C; Suzuki Y; Morasso P; Nomura T
    Biol Cybern; 2020 Feb; 114(1):95-111. PubMed ID: 31960137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees.
    Moore J; Cory R; Tedrake R
    Bioinspir Biomim; 2014 Jun; 9(2):025013. PubMed ID: 24852406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of a lower limb exoskeleton using Learning from Demonstration and an iterative Linear Quadratic Regulator Controller: A simulation study.
    Goldfarb N; Zhou H; Bales C; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4687-4693. PubMed ID: 34892259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupled optimal control of 3D biped for human voluntary motion.
    Ali B; Mughal AM
    Biomed Phys Eng Express; 2024 Jan; 10(2):. PubMed ID: 38241737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Output Feedback Q-Learning Control for the Discrete-Time Linear Quadratic Regulator Problem.
    Rizvi SAA; Lin Z
    IEEE Trans Neural Netw Learn Syst; 2019 May; 30(5):1523-1536. PubMed ID: 30296242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of aperiodic bipedal sprinting.
    Celik H; Piazza SJ
    J Biomech Eng; 2013 Aug; 135(8):81008. PubMed ID: 23722442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphase and Multivariable Linear Controllers That Account for the Joint Torques in Normal Human Walking.
    Altinkaynak ES; Roig G; Braun DJ
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1573-1584. PubMed ID: 31502961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimal PID controller via LQR for standard second order plus time delay systems.
    Srivastava S; Misra A; Thakur SK; Pandit VS
    ISA Trans; 2016 Jan; 60():244-253. PubMed ID: 26654724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.
    Walter JP; Pandy MG
    Med Eng Phys; 2017 Oct; 48():196-205. PubMed ID: 28712529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bipedal model with holonomic constraints for the decoupled optimal controller design of the biomechanical sit-to-stand maneuver.
    Mughal A; Iqbal K
    J Biomech Eng; 2010 Apr; 132(4):041010. PubMed ID: 20387973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template model inspired leg force feedback based control can assist human walking.
    Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg and Joint Stiffness in Children with Spastic Diplegic Cerebral Palsy during Level Walking.
    Wang TM; Huang HP; Li JD; Hong SW; Lo WC; Lu TW
    PLoS One; 2015; 10(12):e0143967. PubMed ID: 26629700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving power system damping using a combination of optimal control theory and differential evolution algorithm.
    Jokarzadeh M; Abedini M; Seifi A
    ISA Trans; 2019 Jul; 90():169-177. PubMed ID: 30612737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.