BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28787477)

  • 21. Biomechanical properties and associated collagen composition in vaginal tissue of women with pelvic organ prolapse.
    Zhou L; Lee JH; Wen Y; Constantinou C; Yoshinobu M; Omata S; Chen B
    J Urol; 2012 Sep; 188(3):875-80. PubMed ID: 22819408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical characterization of the softening behavior of human vaginal tissue.
    Peña E; Martins P; Mascarenhas T; Natal Jorge RM; Ferreira A; Doblaré M; Calvo B
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):275-83. PubMed ID: 21316615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Static Mechanical Loading Influences the Expression of Extracellular Matrix and Cell Adhesion Proteins in Vaginal Cells Derived From Premenopausal Women With Severe Pelvic Organ Prolapse.
    Kufaishi H; Alarab M; Drutz H; Lye S; Shynlova O
    Reprod Sci; 2016 Aug; 23(8):978-92. PubMed ID: 26823071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fundamental Roles of Axial Stretch in Isometric and Isobaric Evaluations of Vascular Contractility.
    Caulk AW; Humphrey JD; Murtada SI
    J Biomech Eng; 2019 Mar; 141(3):0310081-03100810. PubMed ID: 30516238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.
    Peña JA; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2015 Oct; 50():55-69. PubMed ID: 26103440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A structural model of the venous wall considering elastin anisotropy.
    Rezakhaniha R; Stergiopulos N
    J Biomech Eng; 2008 Jun; 130(3):031017. PubMed ID: 18532866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tissue mechanics, animal models, and pelvic organ prolapse: a review.
    Abramowitch SD; Feola A; Jallah Z; Moalli PA
    Eur J Obstet Gynecol Reprod Biol; 2009 May; 144 Suppl 1():S146-58. PubMed ID: 19285776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histology and Biaxial Mechanical Behavior of Abdominal Aortic Aneurysm Tissue Samples.
    Pancheri FQ; Peattie RA; Reddy ND; Ahamed T; Lin W; Ouellette TD; Iafrati MD; Luis Dorfmann A
    J Biomech Eng; 2017 Mar; 139(3):. PubMed ID: 27893065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical characterization of porcine corneas.
    Boschetti F; Triacca V; Spinelli L; Pandolfi A
    J Biomech Eng; 2012 Mar; 134(3):031003. PubMed ID: 22482683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinically relevant mechanical testing of hernia graft constructs.
    Sahoo S; DeLozier KR; Erdemir A; Derwin KA
    J Mech Behav Biomed Mater; 2015 Jan; 41():177-88. PubMed ID: 25460414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elastic and rupture properties of porcine aortic tissue measured using inflation testing.
    Marra SP; Kennedy FE; Kinkaid JN; Fillinger MF
    Cardiovasc Eng; 2006 Dec; 6(4):123-31. PubMed ID: 17136596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.
    Sommer G; Schriefl A; Zeindlinger G; Katzensteiner A; Ainödhofer H; Saxena A; Holzapfel GA
    Acta Biomater; 2013 Dec; 9(12):9379-91. PubMed ID: 23933485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel Methodology for Characterizing Regional Variations in the Material Properties of Murine Aortas.
    Bersi MR; Bellini C; Di Achille P; Humphrey JD; Genovese K; Avril S
    J Biomech Eng; 2016 Jul; 138(7):0710051-07100515. PubMed ID: 27210500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical properties of pelvic soft tissue of young women and impact of aging.
    Chantereau P; Brieu M; Kammal M; Farthmann J; Gabriel B; Cosson M
    Int Urogynecol J; 2014 Nov; 25(11):1547-53. PubMed ID: 25007897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical properties of vaginal tissue: preliminary results.
    Rubod C; Boukerrou M; Brieu M; Jean-Charles C; Dubois P; Cosson M
    Int Urogynecol J Pelvic Floor Dysfunct; 2008 Jun; 19(6):811-6. PubMed ID: 18188492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linking hyperelastic theoretical models and experimental data of vaginal tissue through histological data.
    Rynkevic R; Ferreira J; Martins P; Parente M; Fernandes AA
    J Biomech; 2019 Jan; 82():271-279. PubMed ID: 30466952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Smooth muscle contribution to vaginal viscoelastic response.
    Clark-Patterson GL; Buchanan LM; Ogola BO; Florian-Rodriguez M; Lindsey SH; De Vita R; Miller KS
    J Mech Behav Biomed Mater; 2023 Apr; 140():105702. PubMed ID: 36764168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in tissue composition of the vaginal wall of premenopausal women with prolapse.
    Kerkhof MH; Ruiz-Zapata AM; Bril H; Bleeker MC; Belien JA; Stoop R; Helder MN
    Am J Obstet Gynecol; 2014 Feb; 210(2):168.e1-9. PubMed ID: 24184181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study.
    Hu JJ; Liu YC; Chen GW; Wang MX; Lee PY
    Biomech Model Mechanobiol; 2013 Oct; 12(5):849-68. PubMed ID: 23096240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.