These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 28787783)
1. How sulfate-rich mine drainage affected aquatic ecosystem degradation in northeastern China, and potential ecological risk. Zhao Q; Guo F; Zhang Y; Ma S; Jia X; Meng W Sci Total Environ; 2017 Dec; 609():1093-1102. PubMed ID: 28787783 [TBL] [Abstract][Full Text] [Related]
2. Impacts of point-source Net Alkaline Mine Drainage (NAMD) on stream macroinvertebrate communities. Kimmel WG; Argent DG J Environ Manage; 2019 Nov; 250():109484. PubMed ID: 31487601 [TBL] [Abstract][Full Text] [Related]
3. Changes in macroinvertebrate community structure provide evidence of neutral mine drainage impacts. Byrne P; Reid I; Wood PJ Environ Sci Process Impacts; 2013 Feb; 15(2):393-404. PubMed ID: 25208704 [TBL] [Abstract][Full Text] [Related]
4. Consistent declines in aquatic biodiversity across diverse domains of life in rivers impacted by surface coal mining. Simonin M; Rocca JD; Gerson JR; Moore E; Brooks AC; Czaplicki L; Ross MRV; Fierer N; Craine JM; Bernhardt ES Ecol Appl; 2021 Sep; 31(6):e02389. PubMed ID: 34142402 [TBL] [Abstract][Full Text] [Related]
5. A field-based method to derive macroinvertebrate benchmark for specific conductivity adapted for small data sets and demonstrated in the Hun-Tai River Basin, Northeast China. Zhao Q; Jia X; Xia R; Lin J; Zhang Y Environ Pollut; 2016 Sep; 216():902-910. PubMed ID: 27389551 [TBL] [Abstract][Full Text] [Related]
6. Assessing ecotoxicity of biomining effluents in stream ecosystems by in situ invertebrate bioassays: A case study in Talvivaara, Finland. Salmelin J; Leppänen MT; Karjalainen AK; Vuori KM; Gerhardt A; Hämäläinen H Environ Toxicol Chem; 2017 Jan; 36(1):147-155. PubMed ID: 27253991 [TBL] [Abstract][Full Text] [Related]
7. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chen M; Lu G; Guo C; Yang C; Wu J; Huang W; Yee N; Dang Z Chemosphere; 2015 Jan; 119():734-743. PubMed ID: 25189685 [TBL] [Abstract][Full Text] [Related]
8. Predicting mayfly recovery in acid mine-impaired streams using logistic regression models of in-stream habitat and water chemistry. Johnson KS; Rankin E; Bowman J; Deeds J; Kruse N Environ Monit Assess; 2018 Mar; 190(4):196. PubMed ID: 29516268 [TBL] [Abstract][Full Text] [Related]
9. [Relationship Between Macrophyte Communities and Macroinvertebrate Communities in an Urban Stream]. Qu XD; Yu Y; Zhang M; Duan LF; Peng WQ Huan Jing Ke Xue; 2018 Feb; 39(2):783-791. PubMed ID: 29964842 [TBL] [Abstract][Full Text] [Related]
10. The impact of episodic coal mine drainage pollution on benthic macroinvertebrates in streams in the Anthracite region of Pennsylvania. Maccausland A; McTammany ME Environ Pollut; 2007 Sep; 149(2):216-26. PubMed ID: 17395348 [TBL] [Abstract][Full Text] [Related]
11. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R; Biddau R; Dore E; Vacca A; Marini L Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of potential factors affecting deriving conductivity benchmark by utilizing weighting methods in Hun-Tai River Basin, Northeastern China. Jia X; Zhao Q; Guo F; Ma S; Zhang Y; Zang X Environ Monit Assess; 2017 Mar; 189(3):97. PubMed ID: 28168526 [TBL] [Abstract][Full Text] [Related]
14. Geochemical behaviors of antimony in mining-affected water environment (Southwest China). Li L; Tu H; Zhang S; Wu L; Wu M; Tang Y; Wu P Environ Geochem Health; 2019 Dec; 41(6):2397-2411. PubMed ID: 30972516 [TBL] [Abstract][Full Text] [Related]
15. The Effects of Elevated Specific Conductivity on the Chronic Toxicity of Mining Influenced Streams Using Ceriodaphnia dubia. Armstead MY; Bitzer-Creathers L; Wilson M PLoS One; 2016; 11(11):e0165683. PubMed ID: 27814378 [TBL] [Abstract][Full Text] [Related]
16. Impervious area percentage predicated influence of rapid urbanization on macroinvertebrate communities in a southwest China river system. Wang Q; Roß-Nickoll M; Wu D; Deng W; Wang Z; Yuan X; Zhang Y Sci Total Environ; 2018 Jun; 627():104-117. PubMed ID: 29426123 [TBL] [Abstract][Full Text] [Related]
17. Treated acid mine drainage and stream recovery: Downstream impacts on benthic macroinvertebrate communities in relation to multispecies toxicity bioassays. Steyn M; Oberholster PJ; Botha AM; Genthe B; van den Heever-Kriek PE; Weyers C J Environ Manage; 2019 Apr; 235():377-388. PubMed ID: 30708275 [TBL] [Abstract][Full Text] [Related]
18. Assessment of Impacts of Coal Mining in the Region of Sydney, Australia on the Aquatic Environment Using Macroinvertebrates and Chlorophyll as Indicators. Ali AE; Sloane DR; Strezov V Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 30041448 [TBL] [Abstract][Full Text] [Related]
19. Application of species sensitivity distribution in aquatic probabilistic ecological risk assessment of cypermethrin: a case study in an urban stream in South China. Li H; You J Environ Toxicol Chem; 2015 Mar; 34(3):640-8. PubMed ID: 25545801 [TBL] [Abstract][Full Text] [Related]
20. pH-dependent ecological risk assessment of pentachlorophenol in Taihu Lake and Liaohe River. Zheng L; Liu Z; Yan Z; Zhang Y; Yi X; Zhang J; Zheng X; Zhou J; Zhu Y Ecotoxicol Environ Saf; 2017 Jan; 135():216-224. PubMed ID: 27744191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]