These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28787826)

  • 1. Development of a Hopkinson Bar Apparatus for Testing Soft Materials: Application to a Closed-Cell Aluminum Foam.
    Peroni M; Solomos G; Babcsan N
    Materials (Basel); 2016 Jan; 9(1):. PubMed ID: 28787826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study of the Dynamic and Static Compression Mechanical Properties of Closed-Cell PVC Foams.
    Yao H; Pang Y; Liu X; Qu J
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic Hopkinson bar: A powerful scientific instrument to study mechanical behavior of materials at high strain rates.
    Guo Y; Du B; Liu H; Ding Z; Zhao Z; Tang Z; Suo T; Li Y
    Rev Sci Instrum; 2020 Aug; 91(8):081501. PubMed ID: 32872966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure Mechanisms of an Al 6061 Alloy Foam under Dynamic Conditions.
    Campana F; Mancini E; Pilone D; Sasso M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and numerical investigations on the use of polymer Hopkinson pressure bars.
    Harrigan JJ; Ahonsi B; Palamidi E; Reid SR
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130201. PubMed ID: 25071237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Characterization of Different Aluminium Foams at High Strain Rates.
    Amaro AM; Neto MA; Cirne JS; Reis PNB
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31052456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, Processing, Properties, and Applications of Closed-Cell Aluminum Foams: A Review.
    Fu W; Li Y
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Study on Static and Dynamic Response of Aluminum Honeycomb Sandwich Structures.
    Ciepielewski R; Gieleta R; Miedzińska D
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35269025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures.
    Bendarma A; Jankowiak T; Rusinek A; Lodygowski T; Jia B; Miguélez MH; Klosak M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel integrated tension-compression design for a mini split Hopkinson bar apparatus.
    Chen X; Liu Z; He G; Xie H
    Rev Sci Instrum; 2014 Mar; 85(3):035114. PubMed ID: 24689627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to test brain and brain simulant at ballistic and blast strain rates.
    Zhang J; Song B; Pintar FA; Yoganandan N; Chen W; Gennarelli TA
    Biomed Sci Instrum; 2008; 44():129-34. PubMed ID: 19141904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for obtaining simple shear material properties of the intervertebral disc under high strain rates.
    Ott KA; Armiger RS; Wickwire AC; Carneal CM; Trexler MM; Lennon AM; Zhang J; Merkle AC
    Biomed Sci Instrum; 2012; 48():324-31. PubMed ID: 22846301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials.
    Prabhu R; Whittington WR; Patnaik SS; Mao Y; Begonia MT; Williams LN; Liao J; Horstemeyer MF
    J Vis Exp; 2015 May; (99):e51545. PubMed ID: 26067742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in the Hopkinson bar testing of irradiated/non-irradiated nuclear materials and large specimens.
    Albertini C; Cadoni E; Solomos G
    Philos Trans A Math Phys Eng Sci; 2014 May; 372(2015):20130197. PubMed ID: 24711490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams.
    Luong D; Lehmhus D; Gupta N; Weise J; Bayoumi M
    Materials (Basel); 2016 Feb; 9(2):. PubMed ID: 28787915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static Mechanical Properties of Expanded Polypropylene Crushable Foam.
    Rumianek P; Dobosz T; Nowak R; Dziewit P; Aromiński A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33419072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Energy Absorption Capabilities of Polyethylene Foam under Impact Deformation.
    Yang B; Zuo Y; Chang Z
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Response of Rock-like Materials Based on SHPB Pulse Waveform Characteristics.
    Sun B; Chen R; Ping Y; Zhu Z; Wu N; He Y
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading.
    Trexler MM; Lennon AM; Wickwire AC; Harrigan TP; Luong QT; Graham JL; Maisano AJ; Roberts JC; Merkle AC
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1920-8. PubMed ID: 22098890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and Mechanical Properties of Metal Foams Fabricated via Melt Foaming and Powder Metallurgy Technique: A Review.
    Parveez B; Jamal NA; Anuar H; Ahmad Y; Aabid A; Baig M
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.