These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 28787959)

  • 1. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.
    Xue BL; Wen JL; Sun RC
    Materials (Basel); 2015 Feb; 8(2):586-599. PubMed ID: 28787959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyols from Microwave Liquefied Bagasse and Its Application to Rigid Polyurethane Foam.
    Xie J; Zhai X; Hse CY; Shupe TF; Pan H
    Materials (Basel); 2015 Dec; 8(12):8496-8509. PubMed ID: 28793725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valorisation of crude glycerol in the production of liquefied lignin bio-polyols for polyurethane formulations.
    Hernández-Ramos F; Alriols MG; Antxustegi MM; Labidi J; Erdocia X
    Int J Biol Macromol; 2023 Aug; 247():125855. PubMed ID: 37460069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil.
    Kim HJ; Jin X; Choi JW
    Sci Rep; 2024 Jun; 14(1):13490. PubMed ID: 38866939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-Based Polyurethane Networks Derived from Liquefied Sawdust.
    Gosz K; Tercjak A; Olszewski A; Haponiuk J; Piszczyk Ł
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams.
    Hu S; Li Y
    Bioresour Technol; 2014 Jun; 161():410-5. PubMed ID: 24727702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane.
    Tran MH; Yu JH; Lee EY
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34066548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Polyurethane Adhesives from Crude and Purified Liquefied Wood Sawdust.
    Jiang W; Hosseinpourpia R; Biziks V; Ahmed SA; Militz H; Adamopoulos S
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquefaction of lignin by polyethyleneglycol and glycerol.
    Jin Y; Ruan X; Cheng X; Lü Q
    Bioresour Technol; 2011 Feb; 102(3):3581-3. PubMed ID: 21050748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Strength and Low-Cost Biobased Polyurethane Foam Composites Enhanced by Poplar Wood Powder Liquefaction.
    Yang W; Han Y; Zhang W; Zhang D
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and properties of polyurethane foams prepared from heavy oil modified by polyols with 4,4'-methylene-diphenylene isocyanate (MDI).
    Zou X; Qin T; Wang Y; Huang L; Han Y; Li Y
    Bioresour Technol; 2012 Jun; 114():654-7. PubMed ID: 22497705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin as a Partial Polyol Replacement in Polyurethane Flexible Foam.
    Gondaliya A; Nejad M
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33921156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Neem Oil and Its Glyceride on the Structure and Characterization of Castor Oil-Based Polyurethane Foam.
    Liao YH; Su YL; Chen YC
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation.
    Abolins A; Pomilovskis R; Vanags E; Mierina I; Michalowski S; Fridrihsone A; Kirpluks M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquefaction of Peanut Shells with Cation Exchange Resin and Sulfuric Acid as Dual Catalyst for the Subsequent Synthesis of Rigid Polyurethane Foam.
    Zhang Q; Chen W; Qu G; Lin X; Han D; Yan X; Zhang H
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31167437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams.
    Borowicz M; Isbrandt M; Paciorek-Sadowska J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric pressure liquefaction of dried distillers grains (DDG) and making polyurethane foams from liquefied DDG.
    Yu F; Le Z; Chen P; Liu Y; Lin X; Ruan R
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):235-43. PubMed ID: 18418755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters.
    Mahmood N; Yuan Z; Schmidt J; Charles Xu C
    Bioresour Technol; 2013 Jul; 139():13-20. PubMed ID: 23644065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties.
    Lee JH; Kim SH; Oh KW
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams.
    Uprety BK; Reddy JV; Dalli SS; Rakshit SK
    Bioresour Technol; 2017 Jul; 235():309-315. PubMed ID: 28371769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.