These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28787992)

  • 1. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides.
    Jood P; Ohta M
    Materials (Basel); 2015 Mar; 8(3):1124-1149. PubMed ID: 28787992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Texturization-Induced In-Plane High-Performance Thermoelectrics and Inapplicability of the Debye Model to Out-of-Plane Lattice Thermal Conductivity in Misfit-Layered Chalcogenides.
    Yin C; Liu H; Hu Q; Tang J; Pei Y; Ang R
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48079-48085. PubMed ID: 31774649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the Thermoelectric Properties of Misfit Layered Sulfides (MS)
    Sotnikov AV; Jood P; Ohta M
    ACS Omega; 2020 Jun; 5(22):13006-13013. PubMed ID: 32548485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.
    Hébert S; Berthebaud D; Daou R; Bréard Y; Pelloquin D; Guilmeau E; Gascoin F; Lebedev O; Maignan A
    J Phys Condens Matter; 2016 Jan; 28(1):013001. PubMed ID: 26642835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Misfit-layered Bi1.85 Sr2 Co1.85 O7.7-δ for the hydrogen evolution reaction: beyond van der Waals heterostructures.
    Chua CK; Sofer Z; Jankovský O; Pumera M
    Chemphyschem; 2015 Mar; 16(4):769-74. PubMed ID: 25619729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jood, P. and Ohta, M. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides.
    Jood P; Ohta M
    Materials (Basel); 2015 Sep; 8(9):6482-6483. PubMed ID: 28793576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials.
    Banik A; Roychowdhury S; Biswas K
    Chem Commun (Camb); 2018 Jun; 54(50):6573-6590. PubMed ID: 29749410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraordinary Thermoelectric Performance Realized in Hierarchically Structured AgSbSe
    Gao W; Wang Z; Huang J; Liu Z
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18685-18692. PubMed ID: 29767496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some Thermoelectric Phenomena in Copper Chalcogenides Replaced by Lithium and Sodium Alkaline Metals.
    Kubenova MM; Kuterbekov KA; Balapanov MK; Ishembetov RK; Kabyshev AM; Bekmyrza KZ
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of novel thermoelectric materials by reduction of lattice thermal conductivity.
    Wan C; Wang Y; Wang N; Norimatsu W; Kusunoki M; Koumoto K
    Sci Technol Adv Mater; 2010 Aug; 11(4):044306. PubMed ID: 27877347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening Promising Thermoelectric Materials in Binary Chalcogenides through High-Throughput Computations.
    Jia T; Feng Z; Guo S; Zhang X; Zhang Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11852-11864. PubMed ID: 32069390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the effects of substitution, intercalation, non-stoichiometry and block layer concept in TiS2 based thermoelectrics.
    Guilmeau E; Maignan A; Wan C; Koumoto K
    Phys Chem Chem Phys; 2015 Oct; 17(38):24541-55. PubMed ID: 26343362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band engineering of thermoelectric materials.
    Pei Y; Wang H; Snyder GJ
    Adv Mater; 2012 Dec; 24(46):6125-35. PubMed ID: 23074043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers.
    Selli D; Boulfelfel SE; Schapotschnikow P; Donadio D; Leoni S
    Nanoscale; 2016 Feb; 8(6):3729-38. PubMed ID: 26815914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag
    Wei TR; Qiu P; Zhao K; Shi X; Chen L
    Adv Mater; 2023 Jan; 35(1):e2110236. PubMed ID: 36036433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy engineering promotes thermoelectric performance in p-type chalcogenides.
    Jiang B; Yu Y; Chen H; Cui J; Liu X; Xie L; He J
    Nat Commun; 2021 May; 12(1):3234. PubMed ID: 34050188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Few-Layer Nanosheets of n-Type SnSe
    Saha S; Banik A; Biswas K
    Chemistry; 2016 Oct; 22(44):15634-15638. PubMed ID: 27599196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.
    Mizuguchi Y
    Chem Rec; 2016 Apr; 16(2):633-51. PubMed ID: 26821763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach.
    Tan G; Zhao LD; Shi F; Doak JW; Lo SH; Sun H; Wolverton C; Dravid VP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2014 May; 136(19):7006-17. PubMed ID: 24785377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Thermoelectric Performance in SnTe Nanocomposites with All-Scale Hierarchical Structures.
    Jiang Q; Hu H; Yang J; Xin J; Li S; Viola G; Yan H
    ACS Appl Mater Interfaces; 2020 May; 12(20):23102-23109. PubMed ID: 32338496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.