These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28787999)

  • 41. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
    Sun W; Cai Q; Li P; Deng X; Wei Y; Xu M; Yang X
    Dent Mater; 2010 Sep; 26(9):873-80. PubMed ID: 20579722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of none Bisphenol A structure dimethacrylate monomer and characterization for dental composite applications.
    Liang X; Liu F; He J
    Dent Mater; 2014 Aug; 30(8):917-25. PubMed ID: 24950804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Electron microscopic study of canine dentin and odontoblast following the insertion of various composite resin monomers].
    Furuya K
    Fukuoka Shika Daigaku Gakkai Zasshi; 1989; 16(4):572-99. PubMed ID: 2486709
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins.
    Elliott JE; Lovell LG; Bowman CN
    Dent Mater; 2001 May; 17(3):221-9. PubMed ID: 11257295
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Validation of a Simple HPLC-UV Method for the Determination of Monomers Released from Dental Resin Composites in Artificial Saliva.
    Diamantopoulou EI; Plastiras OE; Mourouzis P; Samanidou V
    Methods Protoc; 2020 May; 3(2):. PubMed ID: 32375232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monomethacrylate co-monomers for dental resins.
    Labella R; Davy KW; Lambrechts P; Van Meerbeek B; Vanherle G
    Eur J Oral Sci; 1998 Jun; 106(3):816-24. PubMed ID: 9672104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of UDMA's potential as a substitute for Bis-GMA in orthodontic adhesives.
    Papakonstantinou AE; Eliades T; Cellesi F; Watts DC; Silikas N
    Dent Mater; 2013 Aug; 29(8):898-905. PubMed ID: 23787036
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of trifluoroethyl methacrylate comonomer on physical properties of Bis-GMA based dental composites.
    Tay JS; Choong BBL; Ooi IH; Tan BS
    Dent Mater J; 2019 Mar; 38(2):226-232. PubMed ID: 30504691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monomer release from nanofilled and microhybrid dental composites after bleaching.
    Tabatabaee MH; Arami S; Ghavam M; Rezaii A
    J Dent (Tehran); 2014 Jan; 11(1):56-66. PubMed ID: 24910677
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol liposomes as predictors of the cytotoxicity of bis-GMA related compounds.
    Fujisawa S; Kadoma Y; Ishihara M; Atsumi T; Yokoe I
    J Liposome Res; 2004; 14(1-2):39-49. PubMed ID: 15461931
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rheological properties of experimental Bis-GMA/TEGDMA flowable resin composites with various macrofiller/microfiller ratio.
    Beun S; Bailly C; Dabin A; Vreven J; Devaux J; Leloup G
    Dent Mater; 2009 Feb; 25(2):198-205. PubMed ID: 18620747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogen bonding interactions in methacrylate monomers and polymers.
    Lemon MT; Jones MS; Stansbury JW
    J Biomed Mater Res A; 2007 Dec; 83(3):734-46. PubMed ID: 17559132
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation of new low viscosity urethane dimethacrylates for dental composites.
    Xu Y; Wang H; Xie D
    J Biomater Sci Polym Ed; 2018; 29(7-9):1011-1025. PubMed ID: 28784029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis, characterization and evaluation of urethane derivatives of Bis-GMA.
    Khatri CA; Stansbury JW; Schultheisz CR; Antonucci JM
    Dent Mater; 2003 Nov; 19(7):584-8. PubMed ID: 12901981
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The mutagenic activity of unpolymerized resin monomers in Salmonella typhimurium and V79 cells.
    Schweikl H; Schmalz G; Rackebrandt K
    Mutat Res; 1998 Jul; 415(1-2):119-30. PubMed ID: 9711268
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis and characterization of N-isopropyl, N-methacryloxyethyl methacrylamide as a possible dental resin.
    Nie J; Lovell LG; Bowman CN
    Biomaterials; 2001 Mar; 22(6):535-40. PubMed ID: 11219716
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Properties of experimental urethane dimethacrylate-based dental resin composite blocks obtained via thermo-polymerization under high pressure.
    Nguyen JF; Migonney V; Ruse ND; Sadoun M
    Dent Mater; 2013 May; 29(5):535-41. PubMed ID: 23522657
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resin based restorative dental materials: characteristics and future perspectives.
    Pratap B; Gupta RK; Bhardwaj B; Nag M
    Jpn Dent Sci Rev; 2019 Nov; 55(1):126-138. PubMed ID: 31687052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of bifunctional comonomers on mechanical strength and water sorption of amorphous calcium phosphate- and silanized glass-filled Bis-GMA-based composites.
    Skrtic D; Antonucci JM
    Biomaterials; 2003 Aug; 24(17):2881-8. PubMed ID: 12742726
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of low-shrinkage monomers on the physicochemical properties of experimental composite resin.
    He J; Garoushi S; Vallittu PK; Lassila L
    Acta Biomater Odontol Scand; 2018; 4(1):30-37. PubMed ID: 29536025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.