These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28788009)

  • 21. Mechanical durability and combustion characteristics of pellets from biomass blends.
    Gil MV; Oulego P; Casal MD; Pevida C; Pis JJ; Rubiera F
    Bioresour Technol; 2010 Nov; 101(22):8859-67. PubMed ID: 20605093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel.
    Wang T; Li Y; Zhang J; Zhao J; Liu Y; Sun L; Liu B; Mao H; Lin Y; Li W; Ju M; Zhu F
    Waste Manag; 2018 Apr; 74():260-266. PubMed ID: 29224974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Early achievements of the Danish pharmaceutical industry--8. Lundbeck].
    Grevsen JV; Kirkegaard H; Kruse E; Kruse PR
    Theriaca; 2016; (43):9-61. PubMed ID: 27491172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative Study of the Properties of Wood Flour and Wood Pellets Manufactured from Secondary Processing Mill Residues.
    Pokhrel G; Han Y; Gardner DJ
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated management of ash from industrial and domestic combustion: a new sustainable approach for reducing greenhouse gas emissions from energy conversion.
    Benassi L; Dalipi R; Consigli V; Pasquali M; Borgese L; Depero LE; Clegg F; Bingham PA; Bontempi E
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14834-14846. PubMed ID: 28477251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mineralogical, chemical and leaching characteristics of ashes from residential biomass combustion.
    Alves CA; Font O; Moreno N; Vicente ED; Duarte M; Tarelho LAC; Querol X
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22688-22703. PubMed ID: 31172436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications.
    Rollinson AN; Williams O
    R Soc Open Sci; 2016 May; 3(5):150578. PubMed ID: 27293776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Listening to Slugs: Acceptability and Consumption of Molluscicide Pellets by the Grey Field Slug,
    de Silva SM; Chesmore D; Smith J; Port G
    Insects; 2021 Jun; 12(6):. PubMed ID: 34208245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of the Physical and Energetic Properties of Fuel Pellets Made from Sage Waste Biomass with the Addition of Rye Bran.
    Jadwisieńczak K; Obidziński S; Choszcz D
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of pellet diameter and length on the quality of pellets and performance, nutrient utilisation and digestive tract development of broilers fed on wheat-based diets.
    Abdollahi MR; Ravindran V; Wester TJ; Ravindran G; Thomas DV
    Br Poult Sci; 2013 Jun; 54(3):337-45. PubMed ID: 23659375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of clinker from paper pulp industry wastes.
    Buruberri LH; Seabra MP; Labrincha JA
    J Hazard Mater; 2015 Apr; 286():252-60. PubMed ID: 25590818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental tests of co-combustion of pelletized leather tannery wastes and hardwood pellets.
    Kluska J; Turzyński T; Kardaś D
    Waste Manag; 2018 Sep; 79():22-29. PubMed ID: 30343749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NIR techniques create added values for the pellet and biofuel industry.
    Lestander TA; Johnsson B; Grothage M
    Bioresour Technol; 2009 Feb; 100(4):1589-94. PubMed ID: 18952415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical and chemical evaluation of furniture waste briquettes.
    Moreno AI; Font R; Conesa JA
    Waste Manag; 2016 Mar; 49():245-252. PubMed ID: 26856442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of energy potential of wood industry wastes through thermochemical conversions.
    Vega LY; López L; Valdés CF; Chejne F
    Waste Manag; 2019 Mar; 87():108-118. PubMed ID: 31109509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues.
    Yuan R; Yu S; Shen Y
    Waste Manag; 2019 Mar; 87():86-96. PubMed ID: 31109588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Occupational exposure of aldehydes resulting from the storage of wood pellets.
    Rahman MA; Rossner A; Hopke PK
    J Occup Environ Hyg; 2017 Jun; 14(6):417-426. PubMed ID: 28475439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pellets valorization of waste biomass harvested by coagulation of freshwater algae.
    Cancela Á; Sánchez Á; Álvarez X; Jiménez A; Ortiz L; Valero E; Varela P
    Bioresour Technol; 2016 Mar; 204():152-156. PubMed ID: 26773958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries.
    Chandra Paul S; Mbewe PBK; Kong SY; Šavija B
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30987183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy potential of residue from wood transformation industry in the central metropolitan area of the Principality of Asturias (northwest Spain).
    Paredes-Sánchez JP; Gutiérrez-Trashorras AJ; Xiberta-Bernat J
    Waste Manag Res; 2014 Mar; 32(3):241-4. PubMed ID: 24503526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.