These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28788111)

  • 1. Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers.
    Yu H; Huang Q; Zhao J
    Materials (Basel); 2014 Jun; 7(7):4878-4895. PubMed ID: 28788111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and Study of Micro Monolithic Tungsten Ball Tips for Micro/Nano-CMM Probes.
    Li R; Chen C; Fan K; Wang Z; Liu F; Huang Q
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Precision Fabrication of Micro Monolithic Tungsten Ball Tips via Arc Discharge and the Taguchi Method.
    Cheng ZY; Yao P; Wang YJ; Chen C; Chen LJ; Li RJ; Huang QX
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon resonance of silver micro-sphere in fiber taper.
    Li J; Li H; Wang K; Zhang X; Yao C; Zhang Y; Yuan P
    Opt Express; 2013 Sep; 21(18):21414-22. PubMed ID: 24104016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a laser interferometric displacement-measuring system for noncontact positioning of a sphere on a rotation axis through its center and for measuring the spherical contour.
    Klingsporn PE
    Appl Opt; 1979 Aug; 18(16):2881-90. PubMed ID: 20212765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of single and double fiber-coupled diffusing spheres.
    Park JR; Donaldson WR; Boni R; Sobolewski R
    Appl Opt; 2004 Jul; 43(20):3967-70. PubMed ID: 15285083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Electromagnetically-Driven Tilted Microcoil on Polyimide Capillary Surface for Potential Single-Fiber Endoscope Scanner Application.
    Yang Z; Shi J; Sun B; Yao J; Ding G; Sawada R
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of sphere-surface distance and exposure dose on resolution of sphere-lens-array lithography.
    Liu X; Li X; Li L; Chen W; Luo X
    Opt Express; 2015 Nov; 23(23):30136-42. PubMed ID: 26698494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly accessible low-loss fiber tapering by the ceramic housed electric furnace (CHEF) and frequency-domain real-time monitoring.
    Ren Y; Li M; Ray S; Bozeat BJ; Liu Y
    Rev Sci Instrum; 2021 Mar; 92(3):035109. PubMed ID: 33820099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of 4 × 1 signal combiner for high-power lasers using hydrofluoric acid.
    Choi IS; Park J; Jeong H; Kim JW; Jeon MY; Seo HS
    Opt Express; 2018 Nov; 26(23):30667-30677. PubMed ID: 30469960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microforging technique for rapid, low-cost fabrication of lens array molds.
    Forest CR; Saez MA; Hunter IW
    Appl Opt; 2007 Dec; 46(36):8668-73. PubMed ID: 18091978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniaturized fluorescence pH sensor with assembly free ball lens on a tapered multimode optical fiber.
    Zhang B; Mumtaz F; Roman M; Alla DR; Gerald Ii RE; Huang J
    Opt Express; 2024 Jan; 32(3):4228-4241. PubMed ID: 38297628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8.
    Williams HE; Freppon DJ; Kuebler SM; Rumpf RC; Melino MA
    Opt Express; 2011 Nov; 19(23):22910-22. PubMed ID: 22109168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer micro-fiber Bragg grating.
    Rajan G; Noor MY; Lovell NH; Ambikaizrajah E; Farrell G; Peng GD
    Opt Lett; 2013 Sep; 38(17):3359-62. PubMed ID: 23988957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printing of a beam expander to enable the combination of hundred-micron optical elements and a single-mode fiber.
    Zhu H; Li M; Hu T; Zhao M; Yang Z
    Opt Lett; 2023 Oct; 48(20):5379-5382. PubMed ID: 37831872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.
    Yuan T; Yang X; Liu Z; Yang J; Li S; Kong D; Qi X; Yu W; Long Q; Yuan L
    Opt Express; 2017 Jul; 25(15):18205-18215. PubMed ID: 28789310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Fiber Bundle-Based High-Speed and Precise Micro-Scanning for Image High-Resolution Reconstruction.
    Jiang J; Zhou X; Liu J; Pan L; Pan Z; Zou F; Li Z; Li F; Ma X; Geng C; Zuo J; Li X
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro lens fabrication by means of femtosecond two photon photopolymerization.
    Guo R; Xiao S; Zhai X; Li J; Xia A; Huang W
    Opt Express; 2006 Jan; 14(2):810-6. PubMed ID: 19503401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional fiber probe based on orthogonal micro focal-length collimation for the measurement of micro parts.
    Cui J; Li J; Feng K; Tan J
    Opt Express; 2015 Oct; 23(20):26386-98. PubMed ID: 26480152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber.
    Rong Q; Zhou Y; Yin X; Shao Z; Qiao X
    Biomed Opt Express; 2017 Sep; 8(9):4096-4107. PubMed ID: 28966849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.