These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28788180)

  • 21. Analysis of air-guiding photonic bandgap fibers.
    Broeng J; Barkou SE; Søndergaard T; Bjarklev A
    Opt Lett; 2000 Jan; 25(2):96-8. PubMed ID: 18059794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. All-solid mid-infrared chalcogenide photonic crystal fiber with ultralarge mode area.
    Ren H; Qi S; Hu Y; Han F; Shi J; Feng X; Yang Z
    Opt Lett; 2019 Nov; 44(22):5553-5556. PubMed ID: 31730106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses.
    Renversez G; Kuhlmey B; McPhedran R
    Opt Lett; 2003 Jun; 28(12):989-91. PubMed ID: 12836755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers.
    Fuerbach A; Steinvurzel P; Bolger JA; Nulsen A; Eggleton BJ
    Opt Lett; 2005 Apr; 30(8):830-2. PubMed ID: 15865369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical Fiber Sensors Based on Microstructured Optical Fibers to Detect Gases and Volatile Organic Compounds-A Review.
    Lopez-Torres D; Elosua C; Arregui FJ
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical study on supercontinuum generation by different optical modes in AsSe
    Chen L; Gao W; Chen L; Wang P; Ni C; Chen X; Zhou Y; Zhang W; Hu J; Liao M; Suzuki T; Ohishi Y
    Appl Opt; 2018 Jan; 57(3):382-390. PubMed ID: 29400785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small-core chalcogenide microstructured fibers for the infrared.
    Désévédavy F; Renversez G; Brilland L; Houizot P; Troles J; Coulombier Q; Smektala F; Traynor N; Adam JL
    Appl Opt; 2008 Nov; 47(32):6014-21. PubMed ID: 19002225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hollow multilayer photonic bandgap fibers for NIR applications.
    Kuriki K; Shapira O; Hart S; Benoit G; Kuriki Y; Viens J; Bayindir M; Joannopoulos J; Fink Y
    Opt Express; 2004 Apr; 12(8):1510-7. PubMed ID: 19474976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers.
    Granzow N; Uebel P; Schmidt MA; Tverjanovich AS; Wondraczek L; Russell PS
    Opt Lett; 2011 Jul; 36(13):2432-4. PubMed ID: 21725435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly coherent supercontinuum in the mid-infrared region with cascaded tellurite and chalcogenide fibers.
    Nguyen HPT; Nagasaka K; Tuan TH; Saini TS; Luo X; Suzuki T; Ohishi Y
    Appl Opt; 2018 Jul; 57(21):6153-6163. PubMed ID: 30117996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of periodicity on the defect modes of large mode area microstructured fibers.
    Flanagan JC; Amezcua R; Poletti F; Hayes JR; Broderick NG; Richardson DJ
    Opt Express; 2008 Nov; 16(23):18631-45. PubMed ID: 19581949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chalcogenide all-solid hybrid microstructured optical fiber with polarization maintaining properties and its mid-infrared supercontinuum generation.
    Tong HT; Koumura A; Nakatani A; Nguyen HPT; Matsumoto M; Sakai G; Suzuki T; Ohishi Y
    Opt Express; 2022 Jul; 30(14):25433-25449. PubMed ID: 36237074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Casting method for producing low-loss chalcogenide microstructured optical fibers.
    Coulombier Q; Brilland L; Houizot P; Chartier T; N'guyen TN; Smektala F; Renversez G; Monteville A; Méchin D; Pain T; Orain H; Sangleboeuf JC; Trolès J
    Opt Express; 2010 Apr; 18(9):9107-12. PubMed ID: 20588758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analytical evaluation of chromatic dispersion in photonic crystal fibers.
    Silvestre E; Pinheiro-Ortega T; Andrés P; Miret JJ; Ortigosa-Blanch A
    Opt Lett; 2005 Mar; 30(5):453-5. PubMed ID: 15789700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers.
    Petersen CR; Engelsholm RD; Markos C; Brilland L; Caillaud C; Trolès J; Bang O
    Opt Express; 2017 Jun; 25(13):15336-15348. PubMed ID: 28788961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of optical and structural aging in As₂S₃ microstructured optical fibers on mid-infrared supercontinuum generation.
    Mouawad O; Amrani F; Kibler B; Picot-Clémente J; Strutynski C; Fatome J; Désévédavy F; Gadret G; Jules JC; Heintz O; Lesniewska E; Smektala F
    Opt Express; 2014 Oct; 22(20):23912-9. PubMed ID: 25321968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm.
    Feng X; Poletti F; Camerlingo A; Parmigiani F; Horak P; Petropoulos P; Loh WH; Richardson DJ
    Opt Express; 2009 Oct; 17(22):20249-55. PubMed ID: 19997250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A double guidance mechanism, nitroaniline based microstructured optical fiber.
    Violakis G; Pissadakis S
    Sci Rep; 2018 Oct; 8(1):15586. PubMed ID: 30349019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functionalized Microstructured Optical Fibers: Materials, Methods, Applications.
    Ermatov T; Skibina JS; Tuchin VV; Gorin DA
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32092963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanostructured graded-index core chalcogenide fiber with all-normal dispersion-design and nonlinear simulations.
    Siwicki B; Filipkowski A; Kasztelanic R; Klimczak M; Buczyński R
    Opt Express; 2017 May; 25(11):12984-12998. PubMed ID: 28786649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.