These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28788212)

  • 41. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K
    J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Brushite-collagen composites for bone regeneration.
    Tamimi F; Kumarasami B; Doillon C; Gbureck U; Le Nihouannen D; Cabarcos EL; Barralet JE
    Acta Biomater; 2008 Sep; 4(5):1315-21. PubMed ID: 18486574
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cements from nanocrystalline hydroxyapatite.
    Barralet JE; Lilley KJ; Grover LM; Farrar DF; Ansell C; Gbureck U
    J Mater Sci Mater Med; 2004 Apr; 15(4):407-11. PubMed ID: 15332608
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanical and In Vitro Biocompatibility of Brushite Cement Modified by Polyethylene Glycol.
    Roy M; Devoe K; Bandyopadhyay A; Bose S
    Mater Sci Eng C Mater Biol Appl; 2012 Dec; 32(8):2145-2152. PubMed ID: 23139441
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and Characterization of an Injectable and Hydrophilous Expandable Bone Cement Based on Poly(methyl methacrylate).
    Yang Z; Chen L; Hao Y; Zang Y; Zhao X; Shi L; Zhang Y; Feng Y; Xu C; Wang F; Wang X; Wang B; Liu C; Tang Y; Wu Z; Lei W
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40846-40856. PubMed ID: 29099164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioactive, Ion-Releasing PMMA Bone Cement Filled with Functional Graphenic Materials.
    Wright ZM; Pandit AM; Karpinsky MM; Holt BD; Zovinka EP; Sydlik SA
    Adv Healthc Mater; 2021 Jan; 10(2):e2001189. PubMed ID: 33326158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential.
    Jayasree R; Kumar TSS; Venkateswari R; Nankar RP; Doble M
    J Mater Sci Mater Med; 2019 Oct; 30(10):113. PubMed ID: 31583477
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced mechanical properties of a novel, injectable, fiber-reinforced brushite cement.
    Maenz S; Kunisch E; Mühlstädt M; Böhm A; Kopsch V; Bossert J; Kinne RW; Jandt KD
    J Mech Behav Biomed Mater; 2014 Nov; 39():328-38. PubMed ID: 25171749
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fatigue performance of a high-strength, degradable calcium phosphate bone cement.
    Ajaxon I; Holmberg A; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Mar; 79():46-52. PubMed ID: 29272812
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Compressive fatigue properties of an acidic calcium phosphate cement-effect of phase composition.
    Ajaxon I; Öhman Mägi C; Persson C
    J Mater Sci Mater Med; 2017 Mar; 28(3):41. PubMed ID: 28144853
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biologically mediated resorption of brushite cement in vitro.
    Grover LM; Gbureck U; Wright AJ; Tremayne M; Barralet JE
    Biomaterials; 2006 Apr; 27(10):2178-85. PubMed ID: 16337265
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined effect of strontium and pyrophosphate on the properties of brushite cements.
    Alkhraisat MH; Mariño FT; Rodríguez CR; Jerez LB; Cabarcos EL
    Acta Biomater; 2008 May; 4(3):664-70. PubMed ID: 18206432
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement.
    Peter SJ; Kim P; Yasko AW; Yaszemski MJ; Mikos AG
    J Biomed Mater Res; 1999 Mar; 44(3):314-21. PubMed ID: 10397934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of surgical factors on the augmentation of cement-injectable cannulated pedicle screw fixation by a novel calcium phosphate-based nanocomposite.
    Sun H; Liu C; Chen S; Bai Y; Yang H; Li C; Yang L
    Front Med; 2019 Oct; 13(5):590-601. PubMed ID: 31555965
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New Injectable Composites for Bone Replacementd.
    Hardouin P; Lemaitre J
    Semin Musculoskelet Radiol; 1997; 1(2):319-324. PubMed ID: 11387083
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomechanical in vitro testing of human osteoporotic lumbar vertebrae following prophylactic kyphoplasty with different candidate materials.
    Rotter R; Pflugmacher R; Kandziora F; Ewert A; Duda G; Mittlmeier T
    Spine (Phila Pa 1976); 2007 Jun; 32(13):1400-5. PubMed ID: 17545907
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Poly (Methyl Methacrylate)/Biphasic Calcium Phosphate/Nano Graphene Bone Cement for Orthopedic Application.
    Pahlevanzadeh F; Ebrahimian-Hosseinabadi M
    J Med Signals Sens; 2019; 9(1):33-41. PubMed ID: 30967988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vertebroplasty by use of a strontium-containing bioactive bone cement.
    Cheung KM; Lu WW; Luk KD; Wong CT; Chan D; Shen JX; Qiu GX; Zheng ZM; Li CH; Liu SL; Chan WK; Leong JC
    Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S84-91. PubMed ID: 16138071
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Addition of Poly(Vinyl Alcohol) Fibers to Apatitic Calcium Phosphate Cement Can Improve Its Toughness.
    Luo J; Faivre J; Engqvist H; Persson C
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083315
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model.
    Penel G; Leroy N; Van Landuyt P; Flautre B; Hardouin P; Lemaître J; Leroy G
    Bone; 1999 Aug; 25(2 Suppl):81S-84S. PubMed ID: 10458282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.