BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 28788296)

  • 1. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.
    Sidambe AT
    Materials (Basel); 2014 Dec; 7(12):8168-8188. PubMed ID: 28788296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications.
    Trevisan F; Calignano F; Aversa A; Marchese G; Lombardi M; Biamino S; Ugues D; Manfredi D
    J Appl Biomater Funct Mater; 2018 Apr; 16(2):57-67. PubMed ID: 28967051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing.
    Davis R; Singh A; Jackson MJ; Coelho RT; Prakash D; Charalambous CP; Ahmed W; da Silva LRR; Lawrence AA
    Int J Adv Manuf Technol; 2022; 120(3-4):1473-1530. PubMed ID: 35228769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting.
    Goto M; Matsumine A; Yamaguchi S; Takahashi H; Akeda K; Nakamura T; Asanuma K; Matsushita T; Kokubo T; Sudo A
    J Biomater Appl; 2021 Apr; 35(9):1153-1167. PubMed ID: 33106079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review.
    Li J; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    J Mech Behav Biomed Mater; 2020 May; 105():103671. PubMed ID: 32090892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications.
    Sarraf M; Rezvani Ghomi E; Alipour S; Ramakrishna S; Liana Sukiman N
    Biodes Manuf; 2022; 5(2):371-395. PubMed ID: 34721937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry.
    Tamayo JA; Riascos M; Vargas CA; Baena LM
    Heliyon; 2021 May; 7(5):e06892. PubMed ID: 34027149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the potential of intermetallic alloys as implantable biomaterials: A comprehensive review.
    Nasiri-Tabrizi B; Basirun WJ; Walvekar R; Yeong CH; Phang SW
    Biomater Adv; 2024 Jul; 161():213854. PubMed ID: 38703541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing.
    Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P
    Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Powder based additive manufacturing for biomedical application of titanium and its alloys: a review.
    Jang TS; Kim D; Han G; Yoon CB; Jung HD
    Biomed Eng Lett; 2020 Nov; 10(4):505-516. PubMed ID: 33194244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing Technologies in Metallic Implants: A Thematic Review on the Techniques and Procedures.
    Attarilar S; Ebrahimi M; Djavanroodi F; Fu Y; Wang L; Yang J
    Int J Bioprint; 2021; 7(1):306. PubMed ID: 33585711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives on Additive Manufacturing Enabled Beta-Titanium Alloys for Biomedical Applications.
    Sing SL
    Int J Bioprint; 2022; 8(1):478. PubMed ID: 35187280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial Ti-Mn-Cu alloys for biomedical applications.
    Alqattan M; Peters L; Alshammari Y; Yang F; Bolzoni L
    Regen Biomater; 2021 Feb; 8(1):rbaa050. PubMed ID: 33732496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of wollastonite bioactive ceramic with titanium for medical applications: An overview.
    Zakaria MY; Sulong AB; Muhamad N; Raza MR; Ramli MI
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():884-895. PubMed ID: 30678979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Modification of Biomedical Ti and Ti Alloys: A Review on Current Advances.
    Xu J; Zhang J; Shi Y; Tang J; Huang D; Yan M; Dargusch MS
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants.
    Palmquist A; Jolic M; Hryha E; Shah FA
    Acta Biomater; 2023 Jan; 156():125-145. PubMed ID: 35675890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Chemical Surface Analyses of Recycled Powder for Direct Metal Powder Bed Fusion Ti-6Al-4V Root Analog Dental Implant: An X-ray Photoelectron Spectroscopy Study.
    Matsko A; Shaker N; Fernandes ACBCJ; Haimeur A; França R
    Bioengineering (Basel); 2023 Mar; 10(3):. PubMed ID: 36978770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility.
    Tan XP; Tan YJ; Chow CSL; Tor SB; Yeong WY
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1328-1343. PubMed ID: 28482501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants.
    Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW
    J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.