These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. Trevisan F; Calignano F; Aversa A; Marchese G; Lombardi M; Biamino S; Ugues D; Manfredi D J Appl Biomater Funct Mater; 2018 Apr; 16(2):57-67. PubMed ID: 28967051 [TBL] [Abstract][Full Text] [Related]
3. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Davis R; Singh A; Jackson MJ; Coelho RT; Prakash D; Charalambous CP; Ahmed W; da Silva LRR; Lawrence AA Int J Adv Manuf Technol; 2022; 120(3-4):1473-1530. PubMed ID: 35228769 [TBL] [Abstract][Full Text] [Related]
4. Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting. Goto M; Matsumine A; Yamaguchi S; Takahashi H; Akeda K; Nakamura T; Asanuma K; Matsushita T; Kokubo T; Sudo A J Biomater Appl; 2021 Apr; 35(9):1153-1167. PubMed ID: 33106079 [TBL] [Abstract][Full Text] [Related]
5. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. Li J; Cui X; Hooper GJ; Lim KS; Woodfield TBF J Mech Behav Biomed Mater; 2020 May; 105():103671. PubMed ID: 32090892 [TBL] [Abstract][Full Text] [Related]
6. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Sarraf M; Rezvani Ghomi E; Alipour S; Ramakrishna S; Liana Sukiman N Biodes Manuf; 2022; 5(2):371-395. PubMed ID: 34721937 [TBL] [Abstract][Full Text] [Related]
7. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Tamayo JA; Riascos M; Vargas CA; Baena LM Heliyon; 2021 May; 7(5):e06892. PubMed ID: 34027149 [TBL] [Abstract][Full Text] [Related]
8. Exploring the potential of intermetallic alloys as implantable biomaterials: A comprehensive review. Nasiri-Tabrizi B; Basirun WJ; Walvekar R; Yeong CH; Phang SW Biomater Adv; 2024 Jul; 161():213854. PubMed ID: 38703541 [TBL] [Abstract][Full Text] [Related]
9. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing. Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193 [TBL] [Abstract][Full Text] [Related]
10. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239 [TBL] [Abstract][Full Text] [Related]
11. Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Jang TS; Kim D; Han G; Yoon CB; Jung HD Biomed Eng Lett; 2020 Nov; 10(4):505-516. PubMed ID: 33194244 [TBL] [Abstract][Full Text] [Related]
12. 3D Printing Technologies in Metallic Implants: A Thematic Review on the Techniques and Procedures. Attarilar S; Ebrahimi M; Djavanroodi F; Fu Y; Wang L; Yang J Int J Bioprint; 2021; 7(1):306. PubMed ID: 33585711 [TBL] [Abstract][Full Text] [Related]
13. Perspectives on Additive Manufacturing Enabled Beta-Titanium Alloys for Biomedical Applications. Sing SL Int J Bioprint; 2022; 8(1):478. PubMed ID: 35187280 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial Ti-Mn-Cu alloys for biomedical applications. Alqattan M; Peters L; Alshammari Y; Yang F; Bolzoni L Regen Biomater; 2021 Feb; 8(1):rbaa050. PubMed ID: 33732496 [TBL] [Abstract][Full Text] [Related]
15. Incorporation of wollastonite bioactive ceramic with titanium for medical applications: An overview. Zakaria MY; Sulong AB; Muhamad N; Raza MR; Ramli MI Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():884-895. PubMed ID: 30678979 [TBL] [Abstract][Full Text] [Related]
16. Surface Modification of Biomedical Ti and Ti Alloys: A Review on Current Advances. Xu J; Zhang J; Shi Y; Tang J; Huang D; Yan M; Dargusch MS Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268983 [TBL] [Abstract][Full Text] [Related]
17. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Palmquist A; Jolic M; Hryha E; Shah FA Acta Biomater; 2023 Jan; 156():125-145. PubMed ID: 35675890 [TBL] [Abstract][Full Text] [Related]
18. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Tan XP; Tan YJ; Chow CSL; Tor SB; Yeong WY Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1328-1343. PubMed ID: 28482501 [TBL] [Abstract][Full Text] [Related]
19. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants. Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415 [TBL] [Abstract][Full Text] [Related]
20. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing. Wauthle R; Ahmadi SM; Amin Yavari S; Mulier M; Zadpoor AA; Weinans H; Van Humbeeck J; Kruth JP; Schrooten J Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():94-100. PubMed ID: 26046272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]