These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 28788344)
61. New chemical route for the synthesis of β-Na(0.33)V₂O₅ and its fully reversible Li intercalation. Kim JK; Senthilkumar B; Sahgong SH; Kim JH; Chi M; Kim Y ACS Appl Mater Interfaces; 2015 Apr; 7(12):7025-32. PubMed ID: 25768692 [TBL] [Abstract][Full Text] [Related]
62. Dual-Defect Engineering Strategy Enables High-Durability Rechargeable Magnesium-Metal Batteries. Chen F; Zhao BQ; Huang K; Ma XF; Li HY; Zhang X; Diao J; Yue J; Huang G; Wang J; Pan F Nanomicro Lett; 2024 Apr; 16(1):184. PubMed ID: 38684597 [TBL] [Abstract][Full Text] [Related]
63. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273 [TBL] [Abstract][Full Text] [Related]
64. Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium-sulfur batteries. Xu GL; Xu YF; Fang JC; Peng XX; Fu F; Huang L; Li JT; Sun SG ACS Appl Mater Interfaces; 2013 Nov; 5(21):10782-93. PubMed ID: 24090340 [TBL] [Abstract][Full Text] [Related]
65. Highly Branched VS Wang Y; Liu Z; Wang C; Yi X; Chen R; Ma L; Hu Y; Zhu G; Chen T; Tie Z; Ma J; Liu J; Jin Z Adv Mater; 2018 Aug; 30(32):e1802563. PubMed ID: 29939428 [TBL] [Abstract][Full Text] [Related]
66. Polyaniline-intercalated layered vanadium oxide nanocomposites--one-pot hydrothermal synthesis and application in lithium battery. Chen Y; Yang G; Zhang Z; Yang X; Hou W; Zhu JJ Nanoscale; 2010 Oct; 2(10):2131-8. PubMed ID: 20835437 [TBL] [Abstract][Full Text] [Related]
67. V Aliahmad N; Liu Y; Xie J; Agarwal M ACS Appl Mater Interfaces; 2018 May; 10(19):16490-16499. PubMed ID: 29688002 [TBL] [Abstract][Full Text] [Related]
68. Synthesis and Electrochemical Properties of MoS₂/rGO/S Composite as a Cathode Material for Lithium-Sulfur Batteries. Reddy BRS; Premasudha M; Lee YJ; Ahn HJ; Reddy NGS; Ahn JH; Cho KK J Nanosci Nanotechnol; 2020 Nov; 20(11):7087-7091. PubMed ID: 32604562 [TBL] [Abstract][Full Text] [Related]
69. Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium-Sulfur Batteries. Lai C; Wu Z; Gu X; Wang C; Xi K; Kumar RV; Zhang S ACS Appl Mater Interfaces; 2015 Nov; 7(43):23885-92. PubMed ID: 26470838 [TBL] [Abstract][Full Text] [Related]
70. Flower-like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum-Ion Batteries. Zhang X; Wang S; Tu J; Zhang G; Li S; Tian D; Jiao S ChemSusChem; 2018 Feb; 11(4):709-715. PubMed ID: 29285890 [TBL] [Abstract][Full Text] [Related]
71. MIL-88A Metal-Organic Framework as a Stable Sulfur-host Cathode for Long-cycle Li-S Batteries. Benítez A; Amaro-Gahete J; Esquivel D; Romero-Salguero FJ; Morales J; Caballero Á Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32121149 [TBL] [Abstract][Full Text] [Related]
72. Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Vinayan BP; Zhao-Karger Z; Diemant T; Chakravadhanula VS; Schwarzburger NI; Cambaz MA; Behm RJ; Kübel C; Fichtner M Nanoscale; 2016 Feb; 8(6):3296-306. PubMed ID: 26542750 [TBL] [Abstract][Full Text] [Related]
73. A Lithium-Ion Battery using a 3 D-Array Nanostructured Graphene-Sulfur Cathode and a Silicon Oxide-Based Anode. Benítez A; Di Lecce D; Elia GA; Caballero Á; Morales J; Hassoun J ChemSusChem; 2018 May; 11(9):1512-1520. PubMed ID: 29493106 [TBL] [Abstract][Full Text] [Related]
74. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. Zhang K; Han P; Gu L; Zhang L; Liu Z; Kong Q; Zhang C; Dong S; Zhang Z; Yao J; Xu H; Cui G; Chen L ACS Appl Mater Interfaces; 2012 Feb; 4(2):658-64. PubMed ID: 22211424 [TBL] [Abstract][Full Text] [Related]
75. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Yoo HD; Liang Y; Dong H; Lin J; Wang H; Liu Y; Ma L; Wu T; Li Y; Ru Q; Jing Y; An Q; Zhou W; Guo J; Lu J; Pantelides ST; Qian X; Yao Y Nat Commun; 2017 Aug; 8(1):339. PubMed ID: 28835681 [TBL] [Abstract][Full Text] [Related]
76. Sulfur encapsulated in a TiO2-anchored hollow carbon nanofiber hybrid nanostructure for lithium-sulfur batteries. Zhang Z; Li Q; Jiang S; Zhang K; Lai Y; Li J Chemistry; 2015 Jan; 21(3):1343-9. PubMed ID: 25413990 [TBL] [Abstract][Full Text] [Related]
77. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries. Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469 [TBL] [Abstract][Full Text] [Related]
78. Dual protection of sulfur by carbon nanospheres and graphene sheets for lithium-sulfur batteries. Wang B; Wen Y; Ye D; Yu H; Sun B; Wang G; Hulicova-Jurcakova D; Wang L Chemistry; 2014 Apr; 20(18):5224-30. PubMed ID: 24692070 [TBL] [Abstract][Full Text] [Related]
79. Co Deng DR; Xue F; Jia YJ; Ye JC; Bai CD; Zheng MS; Dong QF ACS Nano; 2017 Jun; 11(6):6031-6039. PubMed ID: 28570815 [TBL] [Abstract][Full Text] [Related]
80. A Samarium-Doped Carbon Aerogel Cathode with Anchored Polysulfides for Lithium-Sulfur Batteries with High Electrochemical Performance: A Metal-Organic Framework Template Method. Sheng H; Li X; Huang B; Wang J; Li X; Hua Y Chempluschem; 2019 Jul; 84(7):838-844. PubMed ID: 31943985 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]