These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28788366)

  • 1. Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature.
    Alabastri A; Tuccio S; Giugni A; Toma A; Liberale C; Das G; Angelis F; Fabrizio ED; Zaccaria RP
    Materials (Basel); 2013 Oct; 6(11):4879-4910. PubMed ID: 28788366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet Interband Plasmonics With Si Nanostructures.
    Dong Z; Wang T; Chi X; Ho J; Tserkezis C; Yap SLK; Rusydi A; Tjiptoharsono F; Thian D; Mortensen NA; Yang JKW
    Nano Lett; 2019 Nov; 19(11):8040-8048. PubMed ID: 31560545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres.
    Derkachova A; Kolwas K; Demchenko I
    Plasmonics; 2016; 11():941-951. PubMed ID: 27340380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective electric and magnetic plasmonic resonances in spherical nanoclusters.
    Vallecchi A; Albani M; Capolino F
    Opt Express; 2011 Jan; 19(3):2754-72. PubMed ID: 21369097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot-Electron Intraband Luminescence from GaAs Nanospheres Mediated by Magnetic Dipole Resonances.
    Xiang J; Jiang S; Chen J; Li J; Dai Q; Zhang C; Xu Y; Tie S; Lan S
    Nano Lett; 2017 Aug; 17(8):4853-4859. PubMed ID: 28692279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum.
    Fisher D; Fraenkel M; Henis Z; Moshe E; Eliezer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016409. PubMed ID: 11800792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission.
    Ostovar B; Cai YY; Tauzin LJ; Lee SA; Ahmadivand A; Zhang R; Nordlander P; Link S
    ACS Nano; 2020 Nov; 14(11):15757-15765. PubMed ID: 32852941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength dispersion of nonlinear dielectric function of Cu nanoparticle materials.
    Takeda Y; Momida H; Ohnuma M; Ohno T; Kishimoto N
    Opt Express; 2008 May; 16(10):7471-80. PubMed ID: 18545452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alloying: A Platform for Metallic Materials with On-Demand Optical Response.
    Rebello Sousa Dias M; Leite MS
    Acc Chem Res; 2019 Oct; 52(10):2881-2891. PubMed ID: 31305980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.
    Schimpf AM; Thakkar N; Gunthardt CE; Masiello DJ; Gamelin DR
    ACS Nano; 2014 Jan; 8(1):1065-72. PubMed ID: 24359559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions.
    Halté V; Benabbas A; Bigot JY
    Opt Express; 2008 Jul; 16(15):11611-7. PubMed ID: 18648482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial nonlocality effect on the surface plasmon propagation in plasmonic nanospheres waveguide.
    Mir M
    J Phys Condens Matter; 2023 Mar; 35(20):. PubMed ID: 36867884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the Optical and Thermoplasmonics Properties of Gold Nanoparticle Embedded in Al
    Akouibaa A; Masrour R; Jabar A; Benhamou M; Ouarch M; Derouiche A
    Plasmonics; 2022; 17(3):1157-1169. PubMed ID: 35228839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index.
    Yue Z; Cai B; Wang L; Wang X; Gu M
    Sci Adv; 2016 Mar; 2(3):e1501536. PubMed ID: 27051869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical resonances of bowtie slot antennas and their geometry and material dependence.
    Guo H; Meyrath TP; Zentgraf T; Liu N; Fu L; Schweizer H; Giessen H
    Opt Express; 2008 May; 16(11):7756-66. PubMed ID: 18545486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-field surface plasmon field enhancement induced by rippled surfaces.
    D'Acunto M; Fuso F; Micheletto R; Naruse M; Tantussi F; Allegrini M
    Beilstein J Nanotechnol; 2017; 8():956-967. PubMed ID: 28546890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating.
    Anderson A; Deryckx KS; Xu XG; Steinmeyer G; Raschke MB
    Nano Lett; 2010 Jul; 10(7):2519-24. PubMed ID: 20518538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoplasmonics Decontamination of Respirators Face Masks Using Silver Nanoparticles: A New Weapon in the Fight Against COVID-19 Pandemic.
    Akouibaa A; Masrour R; Benhamou M; Derouiche A
    Plasmonics; 2022; 17(6):2307-2322. PubMed ID: 36276844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.