BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28788476)

  • 1. A Constitutive Description for Shape Memory Alloys with the Growth of Martensite Band.
    Li W; Shen X; Peng X
    Materials (Basel); 2014 Jan; 7(1):576-590. PubMed ID: 28788476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hydrogen on super-elastic behavior of NiTi shape memory alloy wires: Experimental observation and diffusional-mechanically coupled constitutive model.
    Jiang HM; Yu C; Kan Q; Xu B; Ma C; Kang G
    J Mech Behav Biomed Mater; 2022 Aug; 132():105276. PubMed ID: 35642861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of One-Dimensional Ivshin-Pence Shape Memory Alloy Constitutive Model for Sensitivity and Uncertainty.
    Islam ABMR; Karadoğan E
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32214042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite Element Analysis for the Self-Loosening Behavior of the Bolted Joint with a Superelastic Shape Memory Alloy.
    Jiang X; Huang J; Wang Y; Li B; Du J; Hao P
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermomechanical Characterization and Modeling of NiTi Shape Memory Alloy Coil Spring.
    Puente-Córdova JG; Rentería-Baltiérrez FY; Diabb-Zavala JM; Mohamed-Noriega N; Bello-Gómez MA; Luna-Martínez JF
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual Extensometer Analysis of Martensite Band Nucleation, Growth, and Strain Softening in Pseudoelastic NiTi Subjected to Different Load Cases.
    Elibol C; Wagner MF
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30126114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Field Study of the Microstructural Dynamic Evolution and Mechanical Response of NiTi Shape Memory Alloy under Mechanical Loading.
    Xi S; Su Y
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33401688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experiments on deformation behaviour of functionally graded NiTi structures.
    Shariat BS; Meng Q; Mahmud AS; Wu Z; Bakhtiari R; Zhang J; Motazedian F; Yang H; Rio G; Nam TH; Liu Y
    Data Brief; 2017 Aug; 13():562-568. PubMed ID: 28706965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.
    Ashrafi MJ; Arghavani J; Naghdabadi R; Sohrabpour S
    J Mech Behav Biomed Mater; 2015 Feb; 42():292-310. PubMed ID: 25528691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications.
    Pan Q; Cho C
    Sensors (Basel); 2007 Sep; 7(9):1887-1900. PubMed ID: 28903203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the Propagation of Stress Wave in Nickel-Titanium Shape Memory Alloys.
    Cui Y; Zeng X; Chen H; Chen J; Wang F
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30011955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Temperature-Dependent Model of Shape Memory Alloys Considering Tensile-Compressive Asymmetry and the Ratcheting Effect.
    Wang L; Feng P; Wu Y; Liu Z
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32668645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity and Uncertainty Analysis of One-Dimensional Tanaka and Liang-Rogers Shape Memory Alloy Constitutive Models.
    Islam ABMR; Karadoğan E
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31137640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and constitutive models of shape memory alloy for structural engineering: A review.
    Mohammadgholipour A; Billah AM
    J Intell Mater Syst Struct; 2023 Dec; 34(20):2335-2359. PubMed ID: 37970098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamically Guided Improvement of Fe-Mn-Al-Ni Shape-Memory Alloys.
    Walnsch A; Bauer A; Freudenberger J; Freiberg K; Wüstefeld C; Vollmer M; Lippmann S; Niendorf T; Leineweber A; Kriegel MJ
    Adv Mater; 2024 Feb; 36(5):e2306794. PubMed ID: 37861282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A constitutive model of porous SMAs considering tensile-compressive asymmetry behaviors.
    Liu B; Dui G; Xie B; Xue L
    J Mech Behav Biomed Mater; 2014 Apr; 32():185-191. PubMed ID: 24480405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The materials engineering characteristics of orthodontic nickel-titanium wires].
    Drescher D; Bourauel C; Thier M
    Fortschr Kieferorthop; 1990 Dec; 51(6):320-6. PubMed ID: 2286345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses.
    Hu JW
    Materials (Basel); 2014 Feb; 7(2):1122-1141. PubMed ID: 28788504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New thermomechanically treated NiTi alloys - a review.
    Zupanc J; Vahdat-Pajouh N; Schäfer E
    Int Endod J; 2018 Oct; 51(10):1088-1103. PubMed ID: 29574784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain Rate Effect upon Mechanical Behaviour of Hydrogen-Charged Cycled NiTi Shape Memory Alloy.
    Gamaoun F
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.