These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 28788480)
1. Comparative Performance of Three Magnesium Compounds on Thermal Degradation Behavior of Red Gum Wood. Wu Y; Yao C; Hu Y; Zhu X; Qing Y; Wu Q Materials (Basel); 2014 Jan; 7(2):637-652. PubMed ID: 28788480 [TBL] [Abstract][Full Text] [Related]
2. [Analysis of pyrolysis process and gas evolution rule of larch wood by TG-FTIR]. Ren XY; Du HS; Wang WL; Gou JS; Chang JM Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Apr; 32(4):944-8. PubMed ID: 22715758 [TBL] [Abstract][Full Text] [Related]
3. Thermal Degradation and Fire Properties of Fungal Mycelium and Mycelium - Biomass Composite Materials. Jones M; Bhat T; Kandare E; Thomas A; Joseph P; Dekiwadia C; Yuen R; John S; Ma J; Wang CH Sci Rep; 2018 Dec; 8(1):17583. PubMed ID: 30514955 [TBL] [Abstract][Full Text] [Related]
4. Numerical Simulation of Coupled Pyrolysis and Combustion Reactions with Directly Measured Fire Properties. Moinuddin K; Razzaque QS; Thomas A Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932722 [TBL] [Abstract][Full Text] [Related]
5. Study on the Minimum Fire-Extinguishing Concentration of Several Commonly Used Extinguishing Agents to Suppress Pyrolysis Gas of Red Pine Wood. Li H; Hao J; Du Z ACS Omega; 2023 Feb; 8(8):7757-7766. PubMed ID: 36873029 [TBL] [Abstract][Full Text] [Related]
6. High temperature and fire behavior of hydrothermally modified wood impregnated with carbon nanomaterials. Song K; Ganguly I; Eastin I; Dichiara A J Hazard Mater; 2020 Feb; 384():121283. PubMed ID: 31585295 [TBL] [Abstract][Full Text] [Related]
7. Effect of Magnesium Hydroxide and Aluminum Hydroxide on the Thermal Stability, Latent Heat and Flammability Properties of Paraffin/HDPE Phase Change Blends. Zhou R; Ming Z; He J; Ding Y; Jiang J Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936639 [TBL] [Abstract][Full Text] [Related]
8. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites. Chen H; Wang J; Ni A; Ding A; Han X; Sun Z Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324716 [TBL] [Abstract][Full Text] [Related]
9. High Leach-Resistant Fire-Retardant Modified Pine Wood ( Lin CF; Karlsson O; Das O; Mensah RA; Mantanis GI; Jones D; Antzutkin ON; Försth M; Sandberg D ACS Omega; 2023 Mar; 8(12):11381-11396. PubMed ID: 37008136 [TBL] [Abstract][Full Text] [Related]
10. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products. Varma AK; Thakur LS; Shankar R; Mondal P Waste Manag; 2019 Apr; 89():224-235. PubMed ID: 31079735 [TBL] [Abstract][Full Text] [Related]
11. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood. Zeng K; Minh DP; Gauthier D; Weiss-Hortala E; Nzihou A; Flamant G Bioresour Technol; 2015 Apr; 182():114-119. PubMed ID: 25686544 [TBL] [Abstract][Full Text] [Related]
12. The Effect of Heat Flux to the Fire-Technical and Chemical Properties of Spruce Wood ( Zachar M; Čabalová I; Kačíková D; Zacharová L Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501079 [TBL] [Abstract][Full Text] [Related]
13. Synergistic Flame Retardant Effect of an Intumescent Flame Retardant Containing Boron and Magnesium Hydroxide. Ai L; Chen S; Zeng J; Yang L; Liu P ACS Omega; 2019 Feb; 4(2):3314-3321. PubMed ID: 31459546 [TBL] [Abstract][Full Text] [Related]
14. Carbonization of corncobs for the preparation of barbecue charcoal and combustion characteristics of corncob char. Kluska J; Ochnio M; Kardaś D Waste Manag; 2020 Mar; 105():560-565. PubMed ID: 32163835 [TBL] [Abstract][Full Text] [Related]
15. The Influence of the Heat Flux of the Infrared Heater on the Charring Rate of Spruce Wood. Párničanová A; Zachar M; Kačíková D Polymers (Basel); 2024 Sep; 16(18):. PubMed ID: 39339121 [TBL] [Abstract][Full Text] [Related]
16. The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood. Kačíková D; Kubovský I; Eštoková A; Kačík F; Kmeťová E; Kováč J; Ďurkovič J Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947756 [TBL] [Abstract][Full Text] [Related]
17. Performance Enhancement of the Poplar Wood Composites Biomimetic Mineralized by CaCO Zhang M; Li H; Wang C; Wang Z; Liu D; Yang T; Deng Z; Yuan G ACS Omega; 2022 Aug; 7(33):29465-29474. PubMed ID: 36033716 [TBL] [Abstract][Full Text] [Related]
18. Characterization of moxa floss combustion by TG/DSC, TG-FTIR and IR. Zhang Y; Kang L; Li H; Huang X; Liu X; Guo L; Huang L Bioresour Technol; 2019 Sep; 288():121516. PubMed ID: 31176939 [TBL] [Abstract][Full Text] [Related]
19. Effects of a Reactive Phosphorus-Sulfur Containing Flame-Retardant Monomer on the Flame Retardancy and Thermal and Mechanical Properties of Unsaturated Polyester Resin. Dai K; Deng Z; Liu G; Wu Y; Xu W; Hu Y Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32605118 [TBL] [Abstract][Full Text] [Related]
20. Valorization of Industrial Lignin as Biobased Carbon Source in Fire Retardant System for Polyamide 11 Blends. Mandlekar N; Cayla A; Rault F; Giraud S; Salaün F; Guan J Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]