BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28788496)

  • 1. Wear Debris Characterization and Corresponding Biological Response: Artificial Hip and Knee Joints.
    Nine MJ; Choudhury D; Hee AC; Mootanah R; Osman NAA
    Materials (Basel); 2014 Feb; 7(2):980-1016. PubMed ID: 28788496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterisation of wear debris surrounding failed total ankle replacements.
    Stratton-Powell AA; Williams S; Tipper JL; Redmond AC; Brockett CL
    Acta Biomater; 2023 Mar; 159():410-422. PubMed ID: 36736850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wear Mechanism of Artificial Joint Failure Using Wear Debris Analysis.
    Zhang D; Liu H; Wang J; Sheng C; Li Z
    J Nanosci Nanotechnol; 2018 Oct; 18(10):6805-6814. PubMed ID: 29954497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Biologic Response to Polyetheretherketone (PEEK) Wear Particles in Total Joint Replacement: A Systematic Review.
    Stratton-Powell AA; Pasko KM; Brockett CL; Tipper JL
    Clin Orthop Relat Res; 2016 Nov; 474(11):2394-2404. PubMed ID: 27432420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How has the introduction of new bearing surfaces altered the biological reactions to byproducts of wear and modularity?
    Wooley PH
    Clin Orthop Relat Res; 2014 Dec; 472(12):3699-708. PubMed ID: 24942963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of UHMWPE wear particles down to ten nanometers in size from in vitro hip and knee joint simulators.
    Tipper JL; Galvin AL; Williams S; McEwen HM; Stone MH; Ingham E; Fisher J
    J Biomed Mater Res A; 2006 Sep; 78(3):473-80. PubMed ID: 16721797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed material wear particle isolation from periprosthetic tissue surrounding total joint replacements.
    Stratton-Powell AA; Williams S; Tipper JL; Redmond AC; Brockett CL
    J Biomed Mater Res B Appl Biomater; 2022 Oct; 110(10):2276-2289. PubMed ID: 35532138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of cytotoxicity of UHMWPE wear debris.
    Rao S; Shirata K; Furukawa KS; Ushida T; Tateishi T; Kanazawa M; Katsube S; Janna S
    Biomed Mater Eng; 1999; 9(4):209-17. PubMed ID: 10674175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator.
    Firkins PJ; Tipper JL; Saadatzadeh MR; Ingham E; Stone MH; Farrar R; Fisher J
    Biomed Mater Eng; 2001; 11(2):143-57. PubMed ID: 11352113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Macrophages in the Biological Reaction to Wear Debris from Artificial Joints.
    Nich C; Takakubo Y; Pajarinen J; Gallo J; Konttinen YT; Takagi M; Goodman SB
    J Long Term Eff Med Implants; 2016; 26(4):303-309. PubMed ID: 29199615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris.
    Jiang Y; Jia T; Wooley PH; Yang SY
    Acta Orthop Belg; 2013 Feb; 79(1):1-9. PubMed ID: 23547507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of analyzed lubricant volumes on the amount and characteristics of generated wear particles from three different types of polyethylene liner materials.
    Markhoff J; Zietz C; Fabry C; Fulda G; Bader R
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1299-1306. PubMed ID: 28636252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The central role of wear debris in periprosthetic osteolysis.
    Purdue PE; Koulouvaris P; Nestor BJ; Sculco TP
    HSS J; 2006 Sep; 2(2):102-13. PubMed ID: 18751821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blockade of XCL1/Lymphotactin Ameliorates Severity of Periprosthetic Osteolysis Triggered by Polyethylene-Particles.
    Tian Y; Terkawi MA; Onodera T; Alhasan H; Matsumae G; Takahashi D; Hamasaki M; Ebata T; Aly MK; Kida H; Shimizu T; Uetsuki K; Kadoya K; Iwasaki N
    Front Immunol; 2020; 11():1720. PubMed ID: 32849609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological reactions to wear debris in total joint replacement.
    Ingham E; Fisher J
    Proc Inst Mech Eng H; 2000; 214(1):21-37. PubMed ID: 10718048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on biocompatibility, tribological property and wear debris characterization of ultra-low-wear polyethylene as artificial joint materials.
    Bian YY; Zhou L; Zhou G; Jin ZM; Xin SX; Hua ZK; Weng XS
    J Mech Behav Biomed Mater; 2018 Jun; 82():87-94. PubMed ID: 29574279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision.
    Hatton A; Nevelos JE; Nevelos AA; Banks RE; Fisher J; Ingham E
    Biomaterials; 2002 Aug; 23(16):3429-40. PubMed ID: 12099286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological response to wear debris generated in carbon based composites as potential bearing surfaces for artificial hip joints.
    Howling GI; Sakoda H; Antonarulrajah A; Marrs H; Stewart TD; Appleyard S; Rand B; Fisher J; Ingham E
    J Biomed Mater Res B Appl Biomater; 2003 Nov; 67(2):758-64. PubMed ID: 14598403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological response to prosthetic debris.
    Bitar D; Parvizi J
    World J Orthop; 2015 Mar; 6(2):172-89. PubMed ID: 25793158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wear and osteolysis in total joint replacements.
    Kadoya Y; Kobayashi A; Ohashi H
    Acta Orthop Scand Suppl; 1998 Feb; 278():1-16. PubMed ID: 9524528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.