These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 28788561)
1. A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope. Lanza M Materials (Basel); 2014 Mar; 7(3):2155-2182. PubMed ID: 28788561 [TBL] [Abstract][Full Text] [Related]
2. Conductance Quantization in Resistive Random Access Memory. Li Y; Long S; Liu Y; Hu C; Teng J; Liu Q; Lv H; Suñé J; Liu M Nanoscale Res Lett; 2015 Dec; 10(1):420. PubMed ID: 26501832 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic Analysis of Oxygen Vacancy-Driven Conductive Filament Formation in Resistive Random Access Memory Metal/NiO/Metal Structures. Yildirim H; Pachter R ACS Appl Mater Interfaces; 2018 Mar; 10(11):9802-9816. PubMed ID: 29488379 [TBL] [Abstract][Full Text] [Related]
4. Exploring Nanoscale Electrical Properties of CuO-Graphene Based Hybrid Interfaced Memory Device by Conductive Atomic Force Microscopy. Singh B; Mehta BR; Varandani D; Savu AV; Brugger J J Nanosci Nanotechnol; 2016 Apr; 16(4):4044-51. PubMed ID: 27451764 [TBL] [Abstract][Full Text] [Related]
5. Resistive Switching Performance Improvement via Modulating Nanoscale Conductive Filament, Involving the Application of Two-Dimensional Layered Materials. Li Y; Long S; Liu Q; Lv H; Liu M Small; 2017 Sep; 13(35):. PubMed ID: 28417548 [TBL] [Abstract][Full Text] [Related]
6. Conductive Atomic Force Microscope Study of Bipolar and Threshold Resistive Switching in 2D Hexagonal Boron Nitride Films. Ranjan A; Raghavan N; O'Shea SJ; Mei S; Bosman M; Shubhakar K; Pey KL Sci Rep; 2018 Feb; 8(1):2854. PubMed ID: 29434292 [TBL] [Abstract][Full Text] [Related]
7. Presetting conductive pathway induced the switching uniformity evolution of a-SiN Sun Y; Ma Z; Jiang X; Tan D; Zhang H; Zhang X; Liu J; Yang H; Li W; Xu L; Chen K; Feng D Nanotechnology; 2018 Oct; 29(41):415701. PubMed ID: 30004387 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen induced redox mechanism in amorphous carbon resistive random access memory. Chen YJ; Chen HL; Young TF; Chang TC; Tsai TM; Chang KC; Zhang R; Chen KH; Lou JC; Chu TJ; Chen JH; Bao DH; Sze SM Nanoscale Res Lett; 2014 Jan; 9(1):52. PubMed ID: 24475979 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth. Song JM; Lee JS Sci Rep; 2016 Jan; 6():18967. PubMed ID: 26739122 [TBL] [Abstract][Full Text] [Related]
10. Using post-breakdown conduction study in a MIS structure to better understand the resistive switching mechanism in an MIM stack. Wu X; Pey KL; Raghavan N; Liu WH; Li X; Bai P; Zhang G; Bosman M Nanotechnology; 2011 Nov; 22(45):455702. PubMed ID: 21992823 [TBL] [Abstract][Full Text] [Related]
11. Emerging memories: resistive switching mechanisms and current status. Jeong DS; Thomas R; Katiyar RS; Scott JF; Kohlstedt H; Petraru A; Hwang CS Rep Prog Phys; 2012 Jul; 75(7):076502. PubMed ID: 22790779 [TBL] [Abstract][Full Text] [Related]
12. Unraveling the Role of Polydopamines in Resistive Switching in Al/Polydopamine/Al Structure for Organic Resistive Random-Access Memory. Yun J; Kim D Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893959 [TBL] [Abstract][Full Text] [Related]
13. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3. Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196 [TBL] [Abstract][Full Text] [Related]
14. Low-Power Resistive Switching Characteristic in HfO Ding X; Feng Y; Huang P; Liu L; Kang J Nanoscale Res Lett; 2019 May; 14(1):157. PubMed ID: 31073774 [TBL] [Abstract][Full Text] [Related]
15. Resistive Memory Devices Based on Reticular Materials for Electrical Information Storage. Oh J; Yoon SM ACS Appl Mater Interfaces; 2021 Dec; 13(48):56777-56792. PubMed ID: 34842430 [TBL] [Abstract][Full Text] [Related]
16. Conductive filament evolution dynamics revealed by cryogenic (1.5 K) multilevel switching of CMOS-compatible Al Beilliard Y; Paquette F; Brousseau F; Ecoffey S; Alibart F; Drouin D Nanotechnology; 2020 Oct; 31(44):445205. PubMed ID: 32674084 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the Switching Mechanism in TiO2-Based RRAM: A Two-Dimensional EDX Approach. Carta D; Salaoru I; Khiat A; Regoutz A; Mitterbauer C; Harrison NM; Prodromakis T ACS Appl Mater Interfaces; 2016 Aug; 8(30):19605-11. PubMed ID: 27409358 [TBL] [Abstract][Full Text] [Related]
18. Flexible Polymer Device Based on Parylene-C with Memory and Temperature Sensing Functionalities. Lin M; Chen Q; Wang Z; Fang Y; Liu J; Yang Y; Wang W; Cai Y; Huang R Polymers (Basel); 2017 Jul; 9(8):. PubMed ID: 30970987 [TBL] [Abstract][Full Text] [Related]
19. Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance. Niu G; Calka P; Auf der Maur M; Santoni F; Guha S; Fraschke M; Hamoumou P; Gautier B; Perez E; Walczyk C; Wenger C; Di Carlo A; Alff L; Schroeder T Sci Rep; 2016 May; 6():25757. PubMed ID: 27181525 [TBL] [Abstract][Full Text] [Related]
20. Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory. Celano U; Goux L; Degraeve R; Fantini A; Richard O; Bender H; Jurczak M; Vandervorst W Nano Lett; 2015 Dec; 15(12):7970-5. PubMed ID: 26523952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]