BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 28788561)

  • 1. A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope.
    Lanza M
    Materials (Basel); 2014 Mar; 7(3):2155-2182. PubMed ID: 28788561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductance Quantization in Resistive Random Access Memory.
    Li Y; Long S; Liu Y; Hu C; Teng J; Liu Q; Lv H; Suñé J; Liu M
    Nanoscale Res Lett; 2015 Dec; 10(1):420. PubMed ID: 26501832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Analysis of Oxygen Vacancy-Driven Conductive Filament Formation in Resistive Random Access Memory Metal/NiO/Metal Structures.
    Yildirim H; Pachter R
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9802-9816. PubMed ID: 29488379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Nanoscale Electrical Properties of CuO-Graphene Based Hybrid Interfaced Memory Device by Conductive Atomic Force Microscopy.
    Singh B; Mehta BR; Varandani D; Savu AV; Brugger J
    J Nanosci Nanotechnol; 2016 Apr; 16(4):4044-51. PubMed ID: 27451764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistive Switching Performance Improvement via Modulating Nanoscale Conductive Filament, Involving the Application of Two-Dimensional Layered Materials.
    Li Y; Long S; Liu Q; Lv H; Liu M
    Small; 2017 Sep; 13(35):. PubMed ID: 28417548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive Atomic Force Microscope Study of Bipolar and Threshold Resistive Switching in 2D Hexagonal Boron Nitride Films.
    Ranjan A; Raghavan N; O'Shea SJ; Mei S; Bosman M; Shubhakar K; Pey KL
    Sci Rep; 2018 Feb; 8(1):2854. PubMed ID: 29434292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presetting conductive pathway induced the switching uniformity evolution of a-SiN
    Sun Y; Ma Z; Jiang X; Tan D; Zhang H; Zhang X; Liu J; Yang H; Li W; Xu L; Chen K; Feng D
    Nanotechnology; 2018 Oct; 29(41):415701. PubMed ID: 30004387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen induced redox mechanism in amorphous carbon resistive random access memory.
    Chen YJ; Chen HL; Young TF; Chang TC; Tsai TM; Chang KC; Zhang R; Chen KH; Lou JC; Chu TJ; Chen JH; Bao DH; Sze SM
    Nanoscale Res Lett; 2014 Jan; 9(1):52. PubMed ID: 24475979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth.
    Song JM; Lee JS
    Sci Rep; 2016 Jan; 6():18967. PubMed ID: 26739122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using post-breakdown conduction study in a MIS structure to better understand the resistive switching mechanism in an MIM stack.
    Wu X; Pey KL; Raghavan N; Liu WH; Li X; Bai P; Zhang G; Bosman M
    Nanotechnology; 2011 Nov; 22(45):455702. PubMed ID: 21992823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging memories: resistive switching mechanisms and current status.
    Jeong DS; Thomas R; Katiyar RS; Scott JF; Kohlstedt H; Petraru A; Hwang CS
    Rep Prog Phys; 2012 Jul; 75(7):076502. PubMed ID: 22790779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Role of Polydopamines in Resistive Switching in Al/Polydopamine/Al Structure for Organic Resistive Random-Access Memory.
    Yun J; Kim D
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Power Resistive Switching Characteristic in HfO
    Ding X; Feng Y; Huang P; Liu L; Kang J
    Nanoscale Res Lett; 2019 May; 14(1):157. PubMed ID: 31073774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistive Memory Devices Based on Reticular Materials for Electrical Information Storage.
    Oh J; Yoon SM
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):56777-56792. PubMed ID: 34842430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive filament evolution dynamics revealed by cryogenic (1.5 K) multilevel switching of CMOS-compatible Al
    Beilliard Y; Paquette F; Brousseau F; Ecoffey S; Alibart F; Drouin D
    Nanotechnology; 2020 Oct; 31(44):445205. PubMed ID: 32674084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the Switching Mechanism in TiO2-Based RRAM: A Two-Dimensional EDX Approach.
    Carta D; Salaoru I; Khiat A; Regoutz A; Mitterbauer C; Harrison NM; Prodromakis T
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19605-11. PubMed ID: 27409358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Polymer Device Based on Parylene-C with Memory and Temperature Sensing Functionalities.
    Lin M; Chen Q; Wang Z; Fang Y; Liu J; Yang Y; Wang W; Cai Y; Huang R
    Polymers (Basel); 2017 Jul; 9(8):. PubMed ID: 30970987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance.
    Niu G; Calka P; Auf der Maur M; Santoni F; Guha S; Fraschke M; Hamoumou P; Gautier B; Perez E; Walczyk C; Wenger C; Di Carlo A; Alff L; Schroeder T
    Sci Rep; 2016 May; 6():25757. PubMed ID: 27181525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory.
    Celano U; Goux L; Degraeve R; Fantini A; Richard O; Bender H; Jurczak M; Vandervorst W
    Nano Lett; 2015 Dec; 15(12):7970-5. PubMed ID: 26523952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.