These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28788594)

  • 1. Spin Relaxation in GaAs: Importance of Electron-Electron Interactions.
    Marchetti G; Hodgson M; McHugh J; Chantrell R; D'Amico I
    Materials (Basel); 2014 Apr; 7(4):2795-2814. PubMed ID: 28788594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of Dyakonov-Perel spin relaxation in high-mobility n-GaAs.
    Dzhioev RI; Kavokin KV; Korenev VL; Lazarev MV; Poletaev NK; Zakharchenya BP; Stinaff EA; Gammon D; Bracker AS; Ware ME
    Phys Rev Lett; 2004 Nov; 93(21):216402. PubMed ID: 15601037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and electron density dependence of spin relaxation in GaAs/AlGaAs quantum well.
    Han L; Zhu Y; Zhang X; Tan P; Ni H; Niu Z
    Nanoscale Res Lett; 2011 Jan; 6(1):84. PubMed ID: 21711611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin dynamics and spin noise in the presence of randomly varying spin-orbit interaction in a semiconductor quantum wire.
    Agnihotri P; Bandyopadhyay S
    J Phys Condens Matter; 2012 May; 24(21):215302. PubMed ID: 22543262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dyakonov-Perel-like Orbital and Spin Relaxations in Centrosymmetric Systems.
    Sohn J; Lee JM; Lee HW
    Phys Rev Lett; 2024 Jun; 132(24):246301. PubMed ID: 38949365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Transport and Observation of Dyakonov-Perel Spin-Orbit Scattering in Monolayer MoS_{2}.
    Schmidt H; Yudhistira I; Chu L; Castro Neto AH; Özyilmaz B; Adam S; Eda G
    Phys Rev Lett; 2016 Jan; 116(4):046803. PubMed ID: 26871351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precession and motional slowing of spin evolution in a high mobility two-dimensional electron gas.
    Brand MA; Malinowski A; Karimov OZ; Marsden PA; Harley RT; Shields AJ; Sanvitto D; Ritchie DA; Simmons MY
    Phys Rev Lett; 2002 Dec; 89(23):236601. PubMed ID: 12485026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for Dyakonov-Perel-like Spin Relaxation in Pt.
    Freeman R; Zholud A; Dun Z; Zhou H; Urazhdin S
    Phys Rev Lett; 2018 Feb; 120(6):067204. PubMed ID: 29481219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin splitting in 2D monochalcogenide semiconductors.
    Do DT; Mahanti SD; Lai CW
    Sci Rep; 2015 Nov; 5():17044. PubMed ID: 26596907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin-orbit-mediated spin relaxation in graphene.
    Huertas-Hernando D; Guinea F; Brataas A
    Phys Rev Lett; 2009 Oct; 103(14):146801. PubMed ID: 19905591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast spin dynamics including spin-orbit interaction in semiconductors.
    Krauss M; Aeschlimann M; Schneider HC
    Phys Rev Lett; 2008 Jun; 100(25):256601. PubMed ID: 18643687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-relaxation time in materials with broken inversion symmetry and large spin-orbit coupling.
    Szolnoki L; Kiss A; Dóra B; Simon F
    Sci Rep; 2017 Aug; 7(1):9949. PubMed ID: 28855600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin relaxation in the presence of electron-electron interactions.
    Punnoose A; Finkel'stein AM
    Phys Rev Lett; 2006 Feb; 96(5):057202. PubMed ID: 16486973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin transport properties of triarylamine-based nanowires.
    Bhattacharya S; Akande A; Sanvito S
    Chem Commun (Camb); 2014 Jun; 50(50):6626-9. PubMed ID: 24825819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of spin-orbit interaction for the electron spin relaxation in organic semiconductors.
    Nuccio L; Willis M; Schulz L; Fratini S; Messina F; D'Amico M; Pratt FL; Lord JS; McKenzie I; Loth M; Purushothaman B; Anthony J; Heeney M; Wilson RM; Hernández I; Cannas M; Sedlak K; Kreouzis T; Gillin WP; Bernhard C; Drew AJ
    Phys Rev Lett; 2013 May; 110(21):216602. PubMed ID: 23745907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors.
    Boross P; Dóra B; Kiss A; Simon F
    Sci Rep; 2013 Nov; 3():3233. PubMed ID: 24252975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin dynamics and relaxation in graphene dictated by electron-hole puddles.
    Tuan DV; Ortmann F; Cummings AW; Soriano D; Roche S
    Sci Rep; 2016 Feb; 6():21046. PubMed ID: 26876333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Phonon-Induced Spin Decoherence from First Principles: Colossal Spin Renormalization in Condensed Matter.
    Park J; Zhou JJ; Luo Y; Bernardi M
    Phys Rev Lett; 2022 Nov; 129(19):197201. PubMed ID: 36399728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin noise spectroscopy in semiconductors.
    Römer M; Hübner J; Oestreich M
    Rev Sci Instrum; 2007 Oct; 78(10):103903. PubMed ID: 17979431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into electron spin dynamics in the presence of correlated noise.
    Spezia S; Adorno DP; Pizzolato N; Spagnolo B
    J Phys Condens Matter; 2012 Feb; 24(5):052204. PubMed ID: 22193943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.