These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28788653)

  • 1. Effect of Receptor Structure and Length on the Wrapping of a Nanoparticle by a Lipid Membrane.
    Zhang H; Wang L; Yuan B; Yang K; Ma Y
    Materials (Basel); 2014 May; 7(5):3855-3866. PubMed ID: 28788653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of geometric nanoparticle rotation on cellular internalization process.
    Yang K; Yuan B; Ma YQ
    Nanoscale; 2013 Sep; 5(17):7998-8006. PubMed ID: 23863854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis.
    Li Y; Zhang M; Zhang Y; Niu X; Liu Z; Yue T; Zhang W
    J Mater Chem B; 2023 Jul; 11(27):6319-6334. PubMed ID: 37232123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes.
    Spangler EJ; Upreti S; Laradji M
    J Chem Phys; 2016 Jan; 144(4):044901. PubMed ID: 26827231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter.
    Shen Z; Ye H; Yi X; Li Y
    ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-Mediated Endocytosis of Nanoparticles: Roles of Shapes, Orientations, and Rotations of Nanoparticles.
    Tang H; Zhang H; Ye H; Zheng Y
    J Phys Chem B; 2018 Jan; 122(1):171-180. PubMed ID: 29199830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique dynamical approach of fully wrapping dendrimer-like soft nanoparticles by lipid bilayer membrane.
    Guo R; Mao J; Yan LT
    ACS Nano; 2013 Dec; 7(12):10646-53. PubMed ID: 24255955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes.
    Shen Z; Ye H; Kröger M; Li Y
    Nanoscale; 2018 Mar; 10(9):4545-4560. PubMed ID: 29461551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics.
    Li Y; Yue T; Yang K; Zhang X
    Biomaterials; 2012 Jun; 33(19):4965-73. PubMed ID: 22483010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Coupling Nanoparticle Stiffness with Shape for Endocytosis: From Rodlike Penetration to Wormlike Wriggling.
    Liu N; Becton M; Zhang L; Wang X
    J Phys Chem B; 2020 Dec; 124(49):11145-11156. PubMed ID: 33226245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane monolayer protrusion mediates a new nanoparticle wrapping pathway.
    Yue T; Zhang X; Huang F
    Soft Matter; 2014 Mar; 10(12):2024-34. PubMed ID: 24652443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles.
    Yue T; Zhang X
    ACS Nano; 2012 Apr; 6(4):3196-205. PubMed ID: 22429100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic simulations of nanoparticle internalization through transferrin receptor dependent clathrin-mediated endocytosis.
    Deng H; Dutta P; Liu J
    Biochim Biophys Acta Gen Subj; 2018 Sep; 1862(9):2104-2111. PubMed ID: 29959983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of ligand distribution on uptake efficiency.
    Schubertová V; Martinez-Veracoechea FJ; Vácha R
    Soft Matter; 2015 Apr; 11(14):2726-30. PubMed ID: 25683904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between ligand mobility and nanoparticle geometry during cellular uptake of PEGylated liposomes and bicelles.
    Shen Z; Ye H; Kröger M; Tang S; Li Y
    Nanoscale; 2019 Aug; 11(34):15971-15983. PubMed ID: 31424067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.
    Li S; Luo Z; Xu Y; Ren H; Deng L; Zhang X; Huang F; Yue T
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):2096-2105. PubMed ID: 28782501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size Limit and Energy Analysis of Nanoparticles during Wrapping Process by Membrane.
    Meng X; Li X
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30400180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: a two-dimensional study.
    Yi X; Gao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062712. PubMed ID: 25019819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.