BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28788692)

  • 1. Characterization of Printed Circuit Boards for Metal and Energy Recovery after Milling and Mechanical Separation.
    Bizzo WA; Figueiredo RA; de Andrade VF
    Materials (Basel); 2014 Jun; 7(6):4555-4566. PubMed ID: 28788692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the non-metal fraction of the processed waste printed circuit boards.
    Kumar A; Holuszko ME; Janke T
    Waste Manag; 2018 May; 75():94-102. PubMed ID: 29449113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of end-of-life mobile phone printed circuit boards for its elemental composition and beneficiation analysis.
    Annamalai M; Gurumurthy K
    J Air Waste Manag Assoc; 2021 Mar; 71(3):315-327. PubMed ID: 32841086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of rejects from waste printed circuit board processing as an alternative fuel for the cement industry.
    Kumar A; Holuszko ME; Janke T
    Waste Manag Res; 2021 Jun; 39(6):841-848. PubMed ID: 32907519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill.
    Yoo JM; Jeong J; Yoo K; Lee JC; Kim W
    Waste Manag; 2009 Mar; 29(3):1132-7. PubMed ID: 18835149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration of precious metals during their recovery from electronic waste.
    Cayumil R; Khanna R; Rajarao R; Mukherjee PS; Sahajwalla V
    Waste Manag; 2016 Nov; 57():121-130. PubMed ID: 26712661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of copper rich metallic phases from waste printed circuit boards.
    Cayumil R; Khanna R; Ikram-Ul-Haq M; Rajarao R; Hill A; Sahajwalla V
    Waste Manag; 2014 Oct; 34(10):1783-92. PubMed ID: 25052340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of precious metals positioning in waste printed circuit boards and the economic benefits of recycling.
    Huang T; Zhu J; Huang X; Ruan J; Xu Z
    Waste Manag; 2022 Feb; 139():105-115. PubMed ID: 34959086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment.
    Pokhrel P; Lin SL; Tsai CT
    J Environ Manage; 2020 Dec; 276():111276. PubMed ID: 32871467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.
    Sarvar M; Salarirad MM; Shabani MA
    Waste Manag; 2015 Nov; 45():246-57. PubMed ID: 26143534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of Cu and Zn from waste printed circuit boards using super-gravity separation.
    Meng L; Zhong Y; Guo L; Wang Z; Chen K; Guo Z
    Waste Manag; 2018 Aug; 78():559-565. PubMed ID: 32559945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers.
    Yamane LH; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2011 Dec; 31(12):2553-8. PubMed ID: 21820883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration of precious metals from waste printed circuit boards using supergravity separation.
    Meng L; Guo L; Zhong Y; Wang Z; Chen K; Guo Z
    Waste Manag; 2018 Dec; 82():147-155. PubMed ID: 30509576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy.
    Veit HM; Bernardes AM; Ferreira JZ; Tenório JA; de Fraga Malfatti C
    J Hazard Mater; 2006 Oct; 137(3):1704-9. PubMed ID: 16757116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of high-grade copper from metal-rich particles of waste printed circuit boards by ball milling and sieving.
    Liu F; Chen W; Wan B; Chen H; Ling Z; Chen Z; Fu Z
    Environ Technol; 2022 Jan; 43(4):514-523. PubMed ID: 32660381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Different leaching procedures for heavy metal toxicity of waste PCBs].
    Zhao GH; Huang ZH; Zheng Z; Luo XZ
    Huan Jing Ke Xue; 2009 May; 30(5):1533-8. PubMed ID: 19558130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective separation of copper over solder alloy from waste printed circuit boards leach solution.
    Kavousi M; Sattari A; Alamdari EK; Firozi S
    Waste Manag; 2017 Feb; 60():636-642. PubMed ID: 27530081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical extraction of tin and copper from acid leachate of printed circuit boards using copper electrodes.
    Silva MSBD; Melo RAC; Lopes-Moriyama AL; Souza CP
    J Environ Manage; 2019 Sep; 246():410-417. PubMed ID: 31200175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of tin from metal powders of waste printed circuit boards.
    Yang T; Zhu P; Liu W; Chen L; Zhang D
    Waste Manag; 2017 Oct; 68():449-457. PubMed ID: 28642077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of metallic concentrations from waste printed circuit boards via reverse floatation.
    He J; Duan C
    Waste Manag; 2017 Feb; 60():618-628. PubMed ID: 27866997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.