These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 28788759)
1. Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials. Liu B; Tang C; Chen J; Wang Q; Pei M; Tang H Opt Express; 2017 May; 25(10):12061-12068. PubMed ID: 28788759 [TBL] [Abstract][Full Text] [Related]
2. Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials. Liu B; Tang C; Chen J; Xie N; Tang H; Zhu X; Park GS Nanoscale Res Lett; 2018 May; 13(1):153. PubMed ID: 29767294 [TBL] [Abstract][Full Text] [Related]
3. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials. Liu B; Tang C; Chen J; Yan Z; Zhu M; Sui Y; Tang H Nanoscale Res Lett; 2017 Nov; 12(1):586. PubMed ID: 29124431 [TBL] [Abstract][Full Text] [Related]
4. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons. Lu H; Gan X; Jia B; Mao D; Zhao J Opt Lett; 2016 Oct; 41(20):4743-4746. PubMed ID: 28005882 [TBL] [Abstract][Full Text] [Related]
5. Bandwidth tunability of graphene absorption enhancement by hybridization of delocalized surface plasmon polaritons and localized magnetic plasmons. Wu Y; Nie Q; Tang C; Yan B; Liu F; Zhu M Discov Nano; 2024 Jan; 19(1):19. PubMed ID: 38273038 [TBL] [Abstract][Full Text] [Related]
6. The Light Absorption Enhancement in Graphene Monolayer Resulting from the Diffraction Coupling of Surface Plasmon Polariton Resonance. Liu B; Yu W; Yan Z; Cai P; Gao F; Tang C; Gu P; Liu Z; Chen J Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055234 [TBL] [Abstract][Full Text] [Related]
7. Toroidal Dipolar Excitation in Metamaterials Consisting of Metal nanodisks and a Dielectrc Spacer on Metal Substrate. Tang C; Yan B; Wang Q; Chen J; Yan Z; Liu F; Chen N; Sui C Sci Rep; 2017 Apr; 7(1):582. PubMed ID: 28373721 [TBL] [Abstract][Full Text] [Related]
8. Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials. Liu B; Tang C; Chen J; Zhu M; Pei M; Zhu X Sci Rep; 2017 Dec; 7(1):17117. PubMed ID: 29215032 [TBL] [Abstract][Full Text] [Related]
9. Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Wang J; Fan C; Ding P; He J; Cheng Y; Hu W; Cai G; Liang E; Xue Q Opt Express; 2012 Jul; 20(14):14871-8. PubMed ID: 22772182 [TBL] [Abstract][Full Text] [Related]
10. A Tunable Terahertz Metamaterial Absorber Composed of Hourglass-Shaped Graphene Arrays. Qi Y; Zhang Y; Liu C; Zhang T; Zhang B; Wang L; Deng X; Wang X; Yu Y Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32192053 [TBL] [Abstract][Full Text] [Related]
11. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers. Liu X; Li D; Sun X; Li Z; Song H; Jiang H; Chen Y Sci Rep; 2015 Jul; 5():12555. PubMed ID: 26218501 [TBL] [Abstract][Full Text] [Related]
12. Graphene plasmonics for tunable terahertz metamaterials. Ju L; Geng B; Horng J; Girit C; Martin M; Hao Z; Bechtel HA; Liang X; Zettl A; Shen YR; Wang F Nat Nanotechnol; 2011 Sep; 6(10):630-4. PubMed ID: 21892164 [TBL] [Abstract][Full Text] [Related]
13. Ultra-broadband and completely modulated absorption enhancement of monolayer graphene in a near-infrared region. Yan Z; Kong L; Tang C; Deng J; Gu P; Chen J; Wang X; Yi Z; Zhu M Opt Express; 2022 Sep; 30(19):34787-34796. PubMed ID: 36242483 [TBL] [Abstract][Full Text] [Related]
14. Graphene-based dual-band independently tunable infrared absorber. Sun P; You C; Mahigir A; Liu T; Xia F; Kong W; Veronis G; Dowling JP; Dong L; Yun M Nanoscale; 2018 Aug; 10(33):15564-15570. PubMed ID: 30088500 [TBL] [Abstract][Full Text] [Related]
15. Graphene on metal-insulator-metal-based plasmonic metamaterials at infrared wavelengths. Ogawa S; Shimatani M; Fukushima S; Okuda S; Matsumoto K Opt Express; 2018 Mar; 26(5):5665-5674. PubMed ID: 29529768 [TBL] [Abstract][Full Text] [Related]
16. A Tunable Dual-Band and Polarization-Insensitive Coherent Perfect Absorber Based on Double-Layers Graphene Hybrid Waveguide. Luo X; Cheng ZQ; Zhai X; Liu ZM; Li SQ; Liu JP; Wang LL; Lin Q; Zhou YH Nanoscale Res Lett; 2019 Nov; 14(1):337. PubMed ID: 31686268 [TBL] [Abstract][Full Text] [Related]
17. Numerical Study of Angle-Insensitive and Tunable Dual-Band THz Absorber Using Periodic Cross-Shaped Graphene Arrays. Sang T; Gao J; Wang L; Qi H; Yin X; Wang Y Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252528 [TBL] [Abstract][Full Text] [Related]
18. Optical nano-imaging of gate-tunable graphene plasmons. Chen J; Badioli M; Alonso-González P; Thongrattanasiri S; Huth F; Osmond J; Spasenović M; Centeno A; Pesquera A; Godignon P; Elorza AZ; Camara N; García de Abajo FJ; Hillenbrand R; Koppens FH Nature; 2012 Jul; 487(7405):77-81. PubMed ID: 22722861 [TBL] [Abstract][Full Text] [Related]
19. Improving the absorption of a plasmonic absorber using a single layer of graphene at telecommunication wavelengths. Zare MS; Nozhat N; Rashiditabar R Appl Opt; 2016 Dec; 55(34):9764-9768. PubMed ID: 27958468 [TBL] [Abstract][Full Text] [Related]
20. Strong tunable absorption enhancement in graphene using dielectric-metal core-shell resonators. Wan M; Li Y; Chen J; Wu W; Chen Z; Wang Z; Wang H Sci Rep; 2017 Feb; 7(1):32. PubMed ID: 28196968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]