These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28788841)

  • 21. High Quality Factor, High Sensitivity Metamaterial Graphene-Perfect Absorber Based on Critical Coupling Theory and Impedance Matching.
    Cen C; Chen Z; Xu D; Jiang L; Chen X; Yi Z; Wu P; Li G; Yi Y
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31906572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced absorption of graphene monolayer with a single-layer resonant grating at the Brewster angle in the visible range.
    Zheng G; Zhang H; Xu L; Liu Y
    Opt Lett; 2016 May; 41(10):2274-7. PubMed ID: 27176981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene perfect absorber based on degenerate critical coupling of toroidal mode.
    Xu R; Fujikata J; Takahara J
    Opt Lett; 2023 Mar; 48(6):1490-1493. PubMed ID: 36946960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable terahertz coherent perfect absorption in a monolayer graphene.
    Fan Y; Zhang F; Zhao Q; Wei Z; Li H
    Opt Lett; 2014 Nov; 39(21):6269-72. PubMed ID: 25361331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perfect absorption for monolayer transition-metal dichalcogenides by critical coupling.
    Wang J; Yang J; Shi D
    Nanotechnology; 2020 Nov; 31(46):465205. PubMed ID: 32721935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra-narrowband light absorption enhancement of monolayer graphene from waveguide mode.
    Liu B; Yu W; Yan Z; Tang C; Chen J; Gu P; Liu Z; Huang Z
    Opt Express; 2020 Aug; 28(17):24908-24917. PubMed ID: 32907021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Light Absorption Enhancement in Graphene Monolayer Resulting from the Diffraction Coupling of Surface Plasmon Polariton Resonance.
    Liu B; Yu W; Yan Z; Cai P; Gao F; Tang C; Gu P; Liu Z; Chen J
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasensitive optical absorption in graphene based on bound states in the continuum.
    Zhang M; Zhang X
    Sci Rep; 2015 Feb; 5():8266. PubMed ID: 25652437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-narrowband visible light absorption in a monolayer MoS
    Zhang J; Hong Q; Zou J; Meng Q; Qin S; Zhu Z
    Opt Express; 2020 Sep; 28(19):27608-27614. PubMed ID: 32988051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable dual-wavelength absorption switch with graphene based on an asymmetric guided-mode resonance structure.
    Park GC; Park K
    Opt Express; 2021 Mar; 29(5):7307-7320. PubMed ID: 33726234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Angle-selective perfect absorption with two-dimensional materials.
    Zhu L; Liu F; Lin H; Hu J; Yu Z; Wang X; Fan S
    Light Sci Appl; 2016 Mar; 5(3):e16052. PubMed ID: 30167153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-guiding-layer resonance structure with an embedded metasurface for quasi-critical coupling without a perfect mirror.
    Park GC; Park K
    Sci Rep; 2020 Sep; 10(1):16014. PubMed ID: 32994499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure.
    Zhou J; Yan S; Li C; Zhu J; Liu QH
    Opt Express; 2018 Jul; 26(14):18155-18163. PubMed ID: 30114095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complete optical absorption in hybrid halide perovskites based on critical coupling in the communication band.
    Cheng ZQ; Luo X; Xu L; Zhai X; Wang LL
    Opt Express; 2020 Apr; 28(9):14151-14160. PubMed ID: 32403875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coherent perfect absorption and transparency in a nanostructured graphene film.
    Zhang J; Guo C; Liu K; Zhu Z; Ye W; Yuan X; Qin S
    Opt Express; 2014 May; 22(10):12524-32. PubMed ID: 24921370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-infrared electro-optic modulator based on plasmonic graphene.
    Das S; Salandrino A; Wu JZ; Hui R
    Opt Lett; 2015 Apr; 40(7):1516-9. PubMed ID: 25831373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy.
    Chen K; Adato R; Altug H
    ACS Nano; 2012 Sep; 6(9):7998-8006. PubMed ID: 22920565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region.
    Zhou W; Li K; Song C; Hao P; Chi M; Yu M; Wu Y
    Opt Express; 2015 Jun; 23(11):A413-8. PubMed ID: 26072865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perfect narrow band absorber for sensing applications.
    Luo S; Zhao J; Zuo D; Wang X
    Opt Express; 2016 May; 24(9):9288-94. PubMed ID: 27137544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus.
    Wang X; Ma Q; Wu L; Guo J; Lu S; Dai X; Xiang Y
    Opt Express; 2018 Mar; 26(5):5488-5496. PubMed ID: 29529751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.