These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28788851)

  • 21. Controllable intermodal coupling in waveguide systems based on tunable hyperbolic metamaterials.
    Tyszka-Zawadzka A; Janaszek B; Kieliszczyk M; Szczepański P
    Opt Express; 2020 Dec; 28(26):40044-40059. PubMed ID: 33379539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repulsive Casimir force between hyperbolic metamaterials.
    Song G; Zeng R; Al-Amri M; Xu J; Zhu C; He P; Yang Y
    Opt Express; 2018 Dec; 26(26):34461-34473. PubMed ID: 30650869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles.
    Riley CT; Smalley JS; Brodie JR; Fainman Y; Sirbuly DJ; Liu Z
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1264-1268. PubMed ID: 28119502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transparent spacecraft smart thermal control device based on VO
    Wu B; Zhang D; Wang C; Zhang K; Wu X
    Phys Chem Chem Phys; 2023 Aug; 25(30):20302-20307. PubMed ID: 37096426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tunable acoustic metamaterial with double-negativity driven by electromagnets.
    Chen Z; Xue C; Fan L; Zhang SY; Li XJ; Zhang H; Ding J
    Sci Rep; 2016 Jul; 6():30254. PubMed ID: 27443196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of emitters coupled with a polymer-based hyperbolic metamaterial.
    Issah I; Pihlava T; Rahimi Rashed A; Caglayan H
    Opt Express; 2022 Mar; 30(6):8723-8733. PubMed ID: 35299318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials.
    Zheng Y; Wang Q; Lin M; Ouyang Z
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electromagnetic energy density in hyperbolic metamaterials.
    Moradi A; Luan PG
    Sci Rep; 2022 Jun; 12(1):10760. PubMed ID: 35750782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust Extraction of Hyperbolic Metamaterial Permittivity using Total Internal Reflection Ellipsometry.
    Zhang C; Hong N; Ji C; Zhu W; Chen X; Agrawal A; Zhang Z; Tiwald TE; Schoeche S; Hilfiker JN; Guo LJ; Lezec HJ
    ACS Photonics; 2018; 5():. PubMed ID: 30997368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced displacements in reflected beams at hyperbolic metamaterials.
    Xu C; Xu J; Song G; Zhu C; Yang Y; Agarwal GS
    Opt Express; 2016 Sep; 24(19):21767-76. PubMed ID: 27661914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiresonance response in hyperbolic metamaterials.
    Janaszek B; Kieliszczyk M; Tyszka-Zawadzka A; Szczepański P
    Appl Opt; 2018 Mar; 57(9):2135-2141. PubMed ID: 29604009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Critical coupling with graphene-based hyperbolic metamaterials.
    Xiang Y; Dai X; Guo J; Zhang H; Wen S; Tang D
    Sci Rep; 2014 Jun; 4():5483. PubMed ID: 24970717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Terahertz active spatial filtering through optically tunable hyperbolic metamaterials.
    Rizza C; Ciattoni A; Spinozzi E; Columbo L
    Opt Lett; 2012 Aug; 37(16):3345-7. PubMed ID: 23381252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial.
    Desouky M; Mahmoud AM; Swillam MA
    Sci Rep; 2017 Nov; 7(1):15312. PubMed ID: 29127383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biaxial hyperbolic metamaterials using anisotropic few-layer black phosphorus.
    Song X; Liu Z; Xiang Y; Aydin K
    Opt Express; 2018 Mar; 26(5):5469-5477. PubMed ID: 29529749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable optical angular selectivity in hyperbolic metamaterial via photonic topological transitions.
    Jiang X; Wang T; Cheng L; Zhong Q; Yan R; Huang X
    Opt Express; 2019 Jun; 27(13):18970-18979. PubMed ID: 31252831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density.
    Allam A; Elsabbagh A; Akl W
    J Acoust Soc Am; 2016 Nov; 140(5):3607. PubMed ID: 27908040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching.
    Zografopoulos DC; Beccherelli R
    Sci Rep; 2015 Aug; 5():13137. PubMed ID: 26272652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands.
    Tyszka-Zawadzka A; Janaszek B; Szczepański P
    Opt Express; 2017 Apr; 25(7):7263-7272. PubMed ID: 28380851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene-based extremely wide-angle tunable metamaterial absorber.
    Linder J; Halterman K
    Sci Rep; 2016 Aug; 6():31225. PubMed ID: 27554137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.