These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 28788927)
1. Investigating an intermediate-band photovoltaic material based on scandium-hyperdoped silicon through first-principles calculations. Dong X; Wang Y; Li X; Li Y Opt Express; 2017 Jun; 25(12):A602-A611. PubMed ID: 28788927 [TBL] [Abstract][Full Text] [Related]
2. Effect of scandium on the optical properties of crystalline silicon material. Dong X; Wang Y; Li X; Li Y Opt Express; 2016 Sep; 24(18):A1269-75. PubMed ID: 27607729 [TBL] [Abstract][Full Text] [Related]
3. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon. Zhu Z; Shao H; Dong X; Li N; Ning BY; Ning XJ; Zhao L; Zhuang J Sci Rep; 2015 May; 5():10513. PubMed ID: 26012369 [TBL] [Abstract][Full Text] [Related]
4. Deep-level impurities hyperdoped diamond: a first-principles calculations. Dong X; Wang T; An Y; Wang Y J Phys Condens Matter; 2021 Mar; 33(11):115502. PubMed ID: 33339017 [TBL] [Abstract][Full Text] [Related]
5. Crystallinity and Sub-Band Gap Absorption of Femtosecond-Laser Hyperdoped Silicon Formed in Different N-Containing Gas Mixtures. Sun H; Xiao J; Zhu S; Hu Y; Feng G; Zhuang J; Zhao L Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772709 [TBL] [Abstract][Full Text] [Related]
6. Room-temperature short-wavelength infrared Si photodetector. Berencén Y; Prucnal S; Liu F; Skorupa I; Hübner R; Rebohle L; Zhou S; Schneider H; Helm M; Skorupa W Sci Rep; 2017 Mar; 7():43688. PubMed ID: 28262746 [TBL] [Abstract][Full Text] [Related]
7. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques. Limaye MV; Chen SC; Lee CY; Chen LY; Singh SB; Shao YC; Wang YF; Hsieh SH; Hsueh HC; Chiou JW; Chen CH; Jang LY; Cheng CL; Pong WF; Hu YF Sci Rep; 2015 Jun; 5():11466. PubMed ID: 26098075 [TBL] [Abstract][Full Text] [Related]
8. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Mailoa JP; Akey AJ; Simmons CB; Hutchinson D; Mathews J; Sullivan JT; Recht D; Winkler MT; Williams JS; Warrender JM; Persans PD; Aziz MJ; Buonassisi T Nat Commun; 2014; 5():3011. PubMed ID: 24385050 [TBL] [Abstract][Full Text] [Related]
9. Calculational Raman spectra investigation of nitrogen-hyperdoped silicon formed in different conditions. Dong X; Wang Y; Song X J Phys Condens Matter; 2020 Mar; 32(11):115701. PubMed ID: 31746777 [TBL] [Abstract][Full Text] [Related]
10. Transition Metal-Hyperdoped InP Semiconductors as Efficient Solar Absorber Materials. García G; Sánchez-Palencia P; Palacios P; Wahnón P Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32046033 [TBL] [Abstract][Full Text] [Related]
11. Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption. Hu K; Wang D; Zhao W; Gu Y; Bu K; Pan J; Qin P; Zhang X; Huang F Inorg Chem; 2018 Apr; 57(7):3956-3962. PubMed ID: 29561142 [TBL] [Abstract][Full Text] [Related]
12. Analysis of SnS2 hyperdoped with V proposed as efficient absorber material. Seminovski Y; Palacios P; Wahnón P J Phys Condens Matter; 2014 Oct; 26(39):395501. PubMed ID: 25204457 [TBL] [Abstract][Full Text] [Related]
13. Fe/Co doped molybdenum diselenide: a promising two-dimensional intermediate-band photovoltaic material. Zhang J; He H; Pan B Nanotechnology; 2015 May; 26(19):195401. PubMed ID: 25895582 [TBL] [Abstract][Full Text] [Related]
14. On-chip lateral Si:Te PIN photodiodes for room-temperature detection in the telecom optical wavelength bands. Shaikh MS; Wen S; Catuneanu MT; Wang M; Erbe A; Prucnal S; Rebohle L; Zhou S; Jamshidi K; Helm M; Berencén Y Opt Express; 2023 Jul; 31(16):26451-26462. PubMed ID: 37710506 [TBL] [Abstract][Full Text] [Related]
15. Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. Ertekin E; Winkler MT; Recht D; Said AJ; Aziz MJ; Buonassisi T; Grossman JC Phys Rev Lett; 2012 Jan; 108(2):026401. PubMed ID: 22324699 [TBL] [Abstract][Full Text] [Related]
16. Raman spectra and optical properties of the chalcogen-hyperdoped silicon: a first-principles study. Dong X; Fang X; Wang Y; Song X Opt Express; 2018 Sep; 26(18):A796-A805. PubMed ID: 30184839 [TBL] [Abstract][Full Text] [Related]
17. [Study on the absorption spectrum properties of flexible black silicon doped with sulfur and fluorine based on first-principles]. Wei W; Zhu Y; Lin C; Tian L; Xu ZW; Nong JP Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Apr; 34(4):910-4. PubMed ID: 25007598 [TBL] [Abstract][Full Text] [Related]
18. Computational Modeling of Novel Bulk Materials for the Intermediate-Band Solar Cells. Rasukkannu M; Velauthapillai D; Vajeeston P ACS Omega; 2017 Apr; 2(4):1454-1462. PubMed ID: 31457517 [TBL] [Abstract][Full Text] [Related]
19. Computational design of a reliable intermediate-band photovoltaic absorber based on diamond. Dong X; Wang T; Lu Z; An Y; Wang Y Opt Express; 2023 May; 31(11):18227-18239. PubMed ID: 37381537 [TBL] [Abstract][Full Text] [Related]
20. Mid-long wavelength infrared absorptance of hyperdoped silicon via femtosecond laser microstructuring. Sun H; Liu X; Zhao L; Jia J; Jiang C; Xiao J; Chen Y; Xu L; Duan Z; Rao P; Sun S Opt Express; 2022 Jan; 30(2):1808-1817. PubMed ID: 35209335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]