BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 28788938)

  • 1. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.
    Nguyen T; Bui V; Lam V; Raub CB; Chang LC; Nehmetallah G
    Opt Express; 2017 Jun; 25(13):15043-15057. PubMed ID: 28788938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic phase aberration compensation for digital holographic microscopy based on phase variation minimization.
    Liu S; Lian Q; Qing Y; Xu Z
    Opt Lett; 2018 Apr; 43(8):1870-1873. PubMed ID: 29652386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberration-free digital holographic phase imaging using the derivative-based principal component analysis.
    Lai X; Xiao S; Xu C; Fan S; Wei K
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33840164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy.
    Zhang X; Sun J; Zhang Z; Fan Y; Chen Q; Zuo C
    Appl Opt; 2019 Jan; 58(2):389-397. PubMed ID: 30645316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy.
    Min J; Yao B; Ketelhut S; Engwer C; Greve B; Kemper B
    Opt Lett; 2017 Jan; 42(2):227-230. PubMed ID: 28081079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing morphogenesis of bone cells under microfluidic shear stress by holographic microscopy and automatic aberration compensation with deep learning.
    Xiao W; Xin L; Cao R; Wu X; Tian R; Che L; Sun L; Ferraro P; Pan F
    Lab Chip; 2021 Apr; 21(7):1385-1394. PubMed ID: 33585849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate quantitative phase digital holographic microscopy with single- and multiple-wavelength telecentric and nontelecentric configurations.
    Nguyen T; Nehmetallah G; Raub C; Mathews S; Aylo R
    Appl Opt; 2016 Jul; 55(21):5666-83. PubMed ID: 27463923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative phase imaging in digital holographic microscopy based on image inpainting using a two-stage generative adversarial network.
    Ma S; Liu Q; Yu Y; Luo Y; Wang S
    Opt Express; 2021 Aug; 29(16):24928-24946. PubMed ID: 34614837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberration Estimation for Synthetic Aperture Digital Holographic Microscope Using Deep Neural Network.
    Jeon H; Jung M; Lee G; Hahn J
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy.
    Zikmund T; Kvasnica L; Týč M; Křížová A; Colláková J; Chmelík R
    J Microsc; 2014 Nov; 256(2):117-25. PubMed ID: 25142511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Movies of cellular and sub-cellular motion by digital holographic microscopy.
    Mann CJ; Yu L; Kim MK
    Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic aberration compensation for digital holographic microscopy based on bicubic downsampling and improved minimization of global phase gradients.
    Yang J; Li F; Du J; Yang F; Yu S; Chen Q; Wang J; Zhang X; Sun S; Yan W
    Opt Express; 2023 Oct; 31(22):36188-36201. PubMed ID: 38017773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Video-Rate Quantitative Phase Imaging Using a Digital Holographic Microscope and a Generative Adversarial Network.
    Castaneda R; Trujillo C; Doblas A
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.
    Sharma H; Zerbe N; Klempert I; Hellwich O; Hufnagl P
    Comput Med Imaging Graph; 2017 Nov; 61():2-13. PubMed ID: 28676295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput label-free cell detection and counting from diffraction patterns with deep fully convolutional neural networks.
    Yi F; Park S; Moon I
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33686845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TOP-GAN: Stain-free cancer cell classification using deep learning with a small training set.
    Rubin M; Stein O; Turko NA; Nygate Y; Roitshtain D; Karako L; Barnea I; Giryes R; Shaked NT
    Med Image Anal; 2019 Oct; 57():176-185. PubMed ID: 31325721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.
    Lam VK; Nguyen TC; Chung BM; Nehmetallah G; Raub CB
    Cytometry A; 2018 Mar; 93(3):334-345. PubMed ID: 29283496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase aberration compensation in digital holographic microscopy based on principal component analysis.
    Zuo C; Chen Q; Qu W; Asundi A
    Opt Lett; 2013 May; 38(10):1724-6. PubMed ID: 23938924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic detection and characterization of quantitative phase images of thalassemic red blood cells using a mask region-based convolutional neural network.
    Lin YH; Liao KY; Sung KB
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33188571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro monitoring of photoinduced necrosis in HeLa cells using digital holographic microscopy and machine learning.
    Belashov AV; Zhikhoreva AA; Belyaeva TN; Kornilova ES; Salova AV; Semenova IV; Vasyutinskii OS
    J Opt Soc Am A Opt Image Sci Vis; 2020 Feb; 37(2):346-352. PubMed ID: 32118916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.