These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28788976)

  • 1. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals.
    Gobron O; Jung K; Galland N; Predehl K; Le Targat R; Ferrier A; Goldner P; Seidelin S; Le Coq Y
    Opt Express; 2017 Jun; 25(13):15539-15548. PubMed ID: 28788976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-heterodyne probing for an ultra-stable laser based on spectral hole burning in a rare-earth-doped crystal.
    Galland N; Lučić N; Zhang S; Alvarez-Martinez H; Le Targat R; Ferrier A; Goldner P; Fang B; Seidelin S; Le Coq Y
    Opt Lett; 2020 Apr; 45(7):1930-1933. PubMed ID: 32236035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband radio-frequency spectrum analysis in spectral-hole-burning media.
    Colice M; Schlottau F; Wagner KH
    Appl Opt; 2006 Sep; 45(25):6393-408. PubMed ID: 16912776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding laser stabilization using spectral hole burning.
    Julsgaard B; Walther A; Kröll S; Rippe L
    Opt Express; 2007 Sep; 15(18):11444-65. PubMed ID: 19547502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu3+:Y2SiO5.
    Leibrandt DR; Thorpe MJ; Chou CW; Fortier TM; Diddams SA; Rosenband T
    Phys Rev Lett; 2013 Dec; 111(23):237402. PubMed ID: 24476301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable, continuous-wave optical parametric oscillator with more than 1W output power in the orange visible spectrum.
    Mieth S; Henderson A; Halfmann T
    Opt Express; 2014 May; 22(9):11182-91. PubMed ID: 24921816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line.
    Kéfélian F; Jiang H; Lemonde P; Santarelli G
    Opt Lett; 2009 Apr; 34(7):914-6. PubMed ID: 19340169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrally narrow, long-term stable optical frequency reference based on a Eu3+:Y2SiO5 crystal at cryogenic temperature.
    Chen QF; Troshyn A; Ernsting I; Kayser S; Vasilyev S; Nevsky A; Schiller S
    Phys Rev Lett; 2011 Nov; 107(22):223202. PubMed ID: 22182027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.
    Lin GR; Chi YC; Liao YS; Kuo HC; Liao ZW; Wang HL; Lin GC
    Opt Express; 2012 Jun; 20(13):13622-35. PubMed ID: 22714427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency stabilization of an AlGaAs laser diode by a Fabry-Perot interferometer locked to a laser beam frequency-locked to the D(2) line of a Cs atomic beam.
    Xie C; Wang L; Chen L; Xie L; Wang Y
    Appl Opt; 1989 Nov; 28(21):4552-5. PubMed ID: 20555914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning.
    Böttger T; Pryde GJ; Cone RL
    Opt Lett; 2003 Feb; 28(3):200-2. PubMed ID: 12656331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Note: Digital laser frequency auto-locking for inter-satellite laser ranging.
    Luo Y; Li H; Yeh HC
    Rev Sci Instrum; 2016 May; 87(5):056105. PubMed ID: 27250480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning.
    Sellin PB; Strickland NM; Carlsten JL; Cone RL
    Opt Lett; 1999 Aug; 24(15):1038-40. PubMed ID: 18073933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast scanning cavity offset lock for laser frequency drift stabilization.
    Seymour-Smith N; Blythe P; Keller M; Lange W
    Rev Sci Instrum; 2010 Jul; 81(7):075109. PubMed ID: 20687761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple laser locking system based on a field-programmable gate array.
    Jørgensen NB; Birkmose D; Trelborg K; Wacker L; Winter N; Hilliard AJ; Bason MG; Arlt JJ
    Rev Sci Instrum; 2016 Jul; 87(7):073106. PubMed ID: 27475547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu(3+)∶Y(2)SiO(5).
    Cook S; Rosenband T; Leibrandt DR
    Phys Rev Lett; 2015 Jun; 114(25):253902. PubMed ID: 26197127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz.
    Rösener B; Kaspar S; Rattunde M; Töpper T; Manz C; Köhler K; Ambacher O; Wagner J
    Opt Lett; 2011 Sep; 36(18):3587-9. PubMed ID: 21931399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locking Multi-Laser Frequencies to a Precision Wavelength Meter: Application to Cold Atoms.
    Kim J; Kim K; Lee D; Shin Y; Kang S; Kim JR; Choi Y; An K; Lee M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term digital frequency-stabilized laser source for large-scale passive laser gyroscopes.
    Zhang F; Liu K; Li Z; Cheng F; Feng X; Li K; Lu Z; Zhang J
    Rev Sci Instrum; 2020 Jan; 91(1):013001. PubMed ID: 32012587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute frequency stability of a diode-laser-pumped Nd:YAG laser stabilized to a high-finesse optical cavity.
    Nakagawa K; Shelkovnikov AS; Katsuda T; Ohtsu M
    Appl Opt; 1994 Sep; 33(27):6383-6. PubMed ID: 20941174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.