These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28788997)

  • 1. Anomalous light trapping enhancement in a two-dimensional gold nanobowl array with an amorphous silicon coating.
    Yang L; Kou P; He N; Dai H; He S
    Opt Express; 2017 Jun; 25(13):14114-14124. PubMed ID: 28788997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light Trapping Enhancement in a Thin Film with 2D Conformal Periodic Hexagonal Arrays.
    Yang X; Zhou S; Wang D; He J; Zhou J; Li X; Gao P; Ye J
    Nanoscale Res Lett; 2015 Dec; 10(1):988. PubMed ID: 26153124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping.
    Yang H; Li BQ; Jiang X; Yu W; Liu H
    Nanotechnology; 2017 Dec; 28(50):505301. PubMed ID: 29099723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel and simple route to fabricate 2D ordered gold nanobowl arrays based on 3D colloidal crystals.
    Rao Y; Tao Q; An M; Rong C; Dong J; Dai Y; Qian W
    Langmuir; 2011 Nov; 27(21):13308-13. PubMed ID: 21932785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximity effect assisted absorption enhancement in thin film with locally clustered nanoholes.
    Wu S; Zhang C; Li X; Zhan Y
    Opt Lett; 2015 Mar; 40(5):792-5. PubMed ID: 25723434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.
    Duan Z; Li M; Mwenya T; Fu P; Li Y; Song D
    Appl Opt; 2016 Jan; 55(1):117-21. PubMed ID: 26835630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique.
    Schuster CS; Kowalczewski P; Martins ER; Patrini M; Scullion MG; Liscidini M; Lewis L; Reardon C; Andreani LC; Krauss TF
    Opt Express; 2013 May; 21 Suppl 3():A433-9. PubMed ID: 24104431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry-breaking nanostructures on crystalline silicon for enhanced light trapping in thin film solar cells.
    Han SJ; Ghosh S; Abudayyeh OK; Hoard BR; Culler EC; Bonilla JE; Han SM; Han SE
    Opt Express; 2016 Dec; 24(26):A1586-A1596. PubMed ID: 28059322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering.
    Wang D; Yu X; Yu Q
    Nanotechnology; 2012 Oct; 23(40):405201. PubMed ID: 22983626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure.
    Yang Z; Du K; Wang H; Lu F; Pang Y; Wang J; Gan X; Zhang W; Mei T; Chua SJ
    Nanotechnology; 2019 Feb; 30(7):075204. PubMed ID: 30523947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light Trapping with Silicon Light Funnel Arrays.
    Prajapati A; Nissan Y; Gabay T; Shalev G
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29562685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.
    Yu Q; Braswell S; Christin B; Xu J; Wallace PM; Gong H; Kaminsky D
    Nanotechnology; 2010 Sep; 21(35):355301. PubMed ID: 20683142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures.
    Hilali MM; Yang S; Miller M; Xu F; Banerjee S; Sreenivasan SV
    Nanotechnology; 2012 Oct; 23(40):405203. PubMed ID: 22997169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-selective growth of Ag nanoparticles controlled by localized surface plasmon resonance of nanobowl arrays.
    Zhu A; Gao R; Zhao X; Zhang F; Zhang X; Yang J; Zhang Y; Chen L; Wang Y
    Nanoscale; 2019 Apr; 11(14):6576-6583. PubMed ID: 30644964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency light-trapping effect using silver nanoparticles on thin amorphous silicon subwavelength structure.
    Tan CL; Lee YT
    Opt Lett; 2013 Dec; 38(23):4943-5. PubMed ID: 24281478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures.
    Liang X; Shu L; Lin H; Fang M; Zhang H; Dong G; Yip S; Xiu F; Ho JC
    Sci Rep; 2016 Sep; 6():34139. PubMed ID: 27671709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell.
    Kiani A; Venkatakrishnan K; Tan B
    Opt Express; 2014 Jan; 22 Suppl 1():A120-31. PubMed ID: 24921988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of periodic texture profile and parameters for enhanced light absorption in amorphous silicon ultra-thin solar cells.
    Joseph S; Joseph J
    Appl Opt; 2017 Jun; 56(17):5013-5022. PubMed ID: 29047649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced photovoltaics inspired by the fovea centralis.
    Shalev G; Schmitt SW; Embrechts H; Brönstrup G; Christiansen S
    Sci Rep; 2015 Feb; 5():8570. PubMed ID: 25709091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.