These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28789066)

  • 1. Versatile, high-power 460 nm laser system for Rydberg excitation of ultracold potassium.
    Arias A; Helmrich S; Schweiger C; Ardizzone L; Lochead G; Whitlock S
    Opt Express; 2017 Jun; 25(13):14829-14839. PubMed ID: 28789066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra-cavity frequency-doubled VECSEL system for narrow linewidth Rydberg EIT spectroscopy.
    Hill JC; Holland WK; Kunz PD; Cox KC; Penttinen JP; Kantola E; Meyer DH
    Opt Express; 2022 Nov; 30(23):41408-41421. PubMed ID: 36366620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable cw UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states.
    Bridge EM; Keegan NC; Bounds AD; Boddy D; Sadler DP; Jones MP
    Opt Express; 2016 Feb; 24(3):2281-92. PubMed ID: 26906804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell.
    Wang J; Bai J; He J; Wang J
    Opt Express; 2017 Sep; 25(19):22510-22518. PubMed ID: 29041560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-noise and high-power second harmonic generation of 532 nm laser for trapping ultracold atoms.
    Wang XK; Zhou ZY; Li MD; Zheng YG; Zhang WY; Su GX; He MG; Yuan ZS
    Rev Sci Instrum; 2022 Dec; 93(12):123002. PubMed ID: 36586898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Step Excitation in Hot Atomic Sodium Vapor.
    Docters B; Wrachtrup J; Gerhardt I
    Sci Rep; 2017 Sep; 7(1):11760. PubMed ID: 28924230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency.
    Zhao J; Zhu X; Zhang L; Feng Z; Li C; Jia S
    Opt Express; 2009 Aug; 17(18):15821-6. PubMed ID: 19724582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons.
    Hofmann CS; Günter G; Schempp H; Robert-de-Saint-Vincent M; Gärttner M; Evers J; Whitlock S; Weidemüller M
    Phys Rev Lett; 2013 May; 110(20):203601. PubMed ID: 25167407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A versatile apparatus for fermionic lithium quantum gases based on an interference-filter laser system.
    Gänger B; Phieler J; Nagler B; Widera A
    Rev Sci Instrum; 2018 Sep; 89(9):093105. PubMed ID: 30278689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser.
    Thoumany P; Hänsch T; Stania G; Urbonas L; Becker T
    Opt Lett; 2009 Jun; 34(11):1621-3. PubMed ID: 19488127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local blockade of Rydberg excitation in an ultracold gas.
    Tong D; Farooqi SM; Stanojevic J; Krishnan S; Zhang YP; Côté R; Eyler EE; Gould PL
    Phys Rev Lett; 2004 Aug; 93(6):063001. PubMed ID: 15323624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of deep ultraviolet narrow linewidth laser by mixing frequency Ti:sapphire laser at 5 kHz repetition rate.
    Wang N; Wang R; Teng H; Li D; Wei Z
    Appl Opt; 2012 Apr; 51(12):1905-9. PubMed ID: 22534895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1.5μm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of -130 dB/Hz and its extension to the L-band.
    Kasai K; Nakazawa M; Tomomatsu Y; Endo T
    Opt Express; 2017 Sep; 25(18):22113-22124. PubMed ID: 29041500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetically induced transparency of interacting Rydberg atoms with two-body dephasing.
    Yan D; Wang B; Bai Z; Li W
    Opt Express; 2020 Mar; 28(7):9677-9689. PubMed ID: 32225570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of Rydberg Blockade Induced by a Single Ion.
    Engel F; Dieterle T; Schmid T; Tomschitz C; Veit C; Zuber N; Löw R; Pfau T; Meinert F
    Phys Rev Lett; 2018 Nov; 121(19):193401. PubMed ID: 30468597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High energy widely tunable narrow-linewidth Ti:sapphire laser using combined-cavity configuration.
    Lv R; Teng H; Zhu J; Wei Z
    Opt Express; 2022 May; 30(10):16289-16296. PubMed ID: 36221474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic observation of resonant electric dipole-dipole interactions between cold Rydberg atoms.
    Afrousheh K; Bohlouli-Zanjani P; Vagale D; Mugford A; Fedorov M; Martin JD
    Phys Rev Lett; 2004 Dec; 93(23):233001. PubMed ID: 15601153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-power tunable narrow-linewidth Ti:sapphire laser at repetition rate of 1 kHz.
    Wang R; Wang N; Teng H; Wei Z
    Appl Opt; 2012 Aug; 51(22):5527-30. PubMed ID: 22859044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution Rydberg tagging time-of-flight measurements of atomic photofragments by single-photon vacuum ultraviolet laser excitation.
    Jones B; Zhou J; Yang L; Ng CY
    Rev Sci Instrum; 2008 Dec; 79(12):123106. PubMed ID: 19123544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realization of a Rydberg-Dressed Ramsey Interferometer and Electrometer.
    Arias A; Lochead G; Wintermantel TM; Helmrich S; Whitlock S
    Phys Rev Lett; 2019 Feb; 122(5):053601. PubMed ID: 30822025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.