These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28789161)

  • 1. HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths.
    Sun X; Abshire JB; Beck JD; Mitra P; Reiff K; Yang G
    Opt Express; 2017 Jul; 25(14):16589-16602. PubMed ID: 28789161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a HgCdTe e-APD based detector for 2  μm CO
    Dumas A; Rothman J; Gibert F; Édouart D; Lasfargues G; Cénac C; Mounier FL; Pellegrino J; Zanatta JP; Bardoux A; Tinto F; Flamant P
    Appl Opt; 2017 Sep; 56(27):7577-7585. PubMed ID: 29047734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform.
    Riris H; Numata K; Wu S; Gonzalez B; Rodriguez M; Scott S; Kawa S; Mao J
    J Appl Remote Sens; 2017 Jul; 11(3):. PubMed ID: 29225719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm.
    Kopytko M; Sobieski J; Gawron W; Martyniuk P
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2.
    Caron J; Durand Y
    Appl Opt; 2009 Oct; 48(28):5413-22. PubMed ID: 19798383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study of a space-based high pulse energy 2  μm CO
    Singh UN; Refaat TF; Ismail S; Davis KJ; Kawa SR; Menzies RT; Petros M
    Appl Opt; 2017 Aug; 56(23):6531-6547. PubMed ID: 29047943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground-based, integrated path differential absorption LIDAR measurement of CO
    Wagner GA; Plusquellic DF
    Appl Opt; 2016 Aug; 55(23):6292-310. PubMed ID: 27534472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small All-Range Lidar for Asteroid and Comet Core Missions.
    Sun X; Cremons DR; Mazarico E; Yang G; Abshire JB; Smith DE; Zuber MT; Storm M; Martin N; Hwang J; Beck JD; Huntoon NR; Rawlings DM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analysis and correction algorithms for atmospheric CO
    Zhu Y; Liu J; Chen X; Zhu X; Bi D; Chen W
    Opt Express; 2019 Oct; 27(22):32679-32699. PubMed ID: 31684476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode.
    He J; Li Q; Wang P; Wang F; Gu Y; Shen C; Luo M; Yu C; Chen L; Chen X; Lu W; Hu W
    Opt Express; 2020 Oct; 28(22):33556-33563. PubMed ID: 33115015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-normal illuminated pseudo-planar Ge-on-Si avalanche photodiodes with high gain and low noise.
    Fleming F; Yi X; Mirza MMA; Jin X; Kirdoda J; Dumas DCS; Saalbach L; Modak M; Muir DAS; Smith C; Coughlan C; Tian Q; Millar RW; David JPR; Paul DJ; Buller GS
    Opt Express; 2024 May; 32(11):19449-19457. PubMed ID: 38859079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating random errors due to shot noise in backscatter lidar observations.
    Liu Z; Hunt W; Vaughan M; Hostetler C; McGill M; Powell K; Winker D; Hu Y
    Appl Opt; 2006 Jun; 45(18):4437-47. PubMed ID: 16778954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CMOS Optoelectronic Receiver IC with an On-Chip Avalanche Photodiode for Home-Monitoring LiDAR Sensors.
    Joo JE; Lee MJ; Park SM
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.
    Gousset S; Petit C; Michau V; Fusco T; Robert C
    Appl Opt; 2015 Dec; 54(34):10163-76. PubMed ID: 26836674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. InGaAs-GaAs Nanowire Avalanche Photodiodes Toward Single-Photon Detection in Free-Running Mode.
    Farrell AC; Meng X; Ren D; Kim H; Senanayake P; Hsieh NY; Rong Z; Chang TY; Azizur-Rahman KM; Huffaker DL
    Nano Lett; 2019 Jan; 19(1):582-590. PubMed ID: 30517782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared detector module for airborne hyperspectral LiDAR: design and demonstration.
    Qian L; Wu D; Liu D; Zhong L; Shi S; Song S; Gong W
    Appl Opt; 2023 Mar; 62(8):2161-2167. PubMed ID: 37133106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes.
    Lawrence WG; Varadi G; Entine G; Podniesinski E; Wallace PK
    Cytometry A; 2008 Aug; 73(8):767-76. PubMed ID: 18612992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Few-photon detection using InAs avalanche photodiodes.
    Tan CH; Velichko A; Lim LW; Ng JS
    Opt Express; 2019 Feb; 27(4):5835-5842. PubMed ID: 30876178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.
    Refaat TF; Singh UN; Yu J; Petros M; Ismail S; Kavaya MJ; Davis KJ
    Appl Opt; 2015 Feb; 54(6):1387-98. PubMed ID: 25968204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration experiments based on a CO
    Xia T; Liu J; Zhu X; Chen C; Deng Y; Zang H; Zhang X; Xie Y; Yang J; Chen W
    Opt Express; 2022 Sep; 30(20):35146-35162. PubMed ID: 36258473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.