These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28789164)

  • 1. Investigation on achieving super-resolution by solid immersion lens based STED microscopy.
    Kim WC; Moon H; Lee WS; Lim G; Choi GJ; Kang D; Lee H; Park NC
    Opt Express; 2017 Jul; 25(14):16629-16642. PubMed ID: 28789164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope.
    Klauss A; König M; Hille C
    PLoS One; 2015; 10(6):e0130717. PubMed ID: 26091552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods.
    Tam J; Merino D
    J Neurochem; 2015 Nov; 135(4):643-58. PubMed ID: 26222552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photon-separation to enhance the spatial resolution of pulsed STED microscopy.
    Tortarolo G; Sun Y; Teng KW; Ishitsuka Y; Lanzanó L; Selvin PR; Barbieri B; Diaspro A; Vicidomini G
    Nanoscale; 2019 Jan; 11(4):1754-1761. PubMed ID: 30624448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved lateral resolution with an annular vortex depletion beam in STED microscopy.
    Wang B; Shi J; Zhang T; Xu X; Cao Y; Li X
    Opt Lett; 2017 Dec; 42(23):4885-4888. PubMed ID: 29216135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective.
    Heine J; Wurm CA; Keller-Findeisen J; Schönle A; Harke B; Reuss M; Winter FR; Donnert G
    Rev Sci Instrum; 2018 May; 89(5):053701. PubMed ID: 29864829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on improvement of lateral resolution of continuous wave STED microscopy by standing wave illumination.
    Lee WS; Lim G; Kim WC; Choi GJ; Yi HW; Park NC
    Opt Express; 2018 Apr; 26(8):9901-9919. PubMed ID: 29715937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberration correction for improving the image quality in STED microscopy using the genetic algorithm.
    Wang L; Yan W; Li R; Weng X; Zhang J; Yang Z; Liu L; Ye T; Qu J
    Nanophotonics; 2018 Dec; 7(12):1971-1980. PubMed ID: 32123648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning donut profile for spatial resolution in stimulated emission depletion microscopy.
    Neupane B; Chen F; Sun W; Chiu DT; Wang G
    Rev Sci Instrum; 2013 Apr; 84(4):043701. PubMed ID: 23635197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy.
    Paës G; Habrant A; Terryn C
    Plants (Basel); 2018 Feb; 7(1):. PubMed ID: 29415498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach.
    Wang L; Chen B; Yan W; Yang Z; Peng X; Lin D; Weng X; Ye T; Qu J
    Nanoscale; 2018 Aug; 10(34):16252-16260. PubMed ID: 30124714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mirror-enhanced super-resolution microscopy.
    Yang X; Xie H; Alonas E; Liu Y; Chen X; Santangelo PJ; Ren Q; Xi P; Jin D
    Light Sci Appl; 2016; 5(6):e16134-. PubMed ID: 27398242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on the realization of high resolution solid immersion lens-based near-field imaging optics by use of an annular aperture.
    Moon H; Yoon YJ; Kim WC; Park NC; Park KS; Park YP
    Opt Express; 2010 Aug; 18(16):17533-41. PubMed ID: 20721138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-mode super-resolution imaging with stimulated emission depletion microscopy and fluorescence emission difference microscopy.
    Wang Y; Ma Y; Kuang C; Fang Y; Xu Y; Liu X; Ding Z
    Appl Opt; 2015 Jun; 54(17):5425-31. PubMed ID: 26192843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells.
    Neupane B; Jin T; Mellor LF; Loboa EG; Ligler FS; Wang G
    Sensors (Basel); 2015 Sep; 15(9):24178-90. PubMed ID: 26393614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of near-field optical storage with a solid immersion lens.
    Zhang Y
    J Opt Soc Am A Opt Image Sci Vis; 2006 Sep; 23(9):2132-6. PubMed ID: 16912739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation.
    Vicidomini G; Hernández IC; d'Amora M; Zanacchi FC; Bianchini P; Diaspro A
    Methods; 2014 Mar; 66(2):124-30. PubMed ID: 23816792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercontinuum stimulated emission depletion fluorescence lifetime imaging.
    Lesoine MD; Bose S; Petrich JW; Smith EA
    J Phys Chem B; 2012 Jul; 116(27):7821-6. PubMed ID: 22694181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics.
    Yoon YJ; Kim WC; Park NC; Park KS; Park YP
    Opt Lett; 2009 Jul; 34(13):1961-3. PubMed ID: 19571966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface wave illumination Fourier ptychographic microscopy.
    Liu Q; Fang Y; Zhou R; Xiu P; Kuang C; Liu X
    Opt Lett; 2016 Nov; 41(22):5373-5376. PubMed ID: 27842135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.