These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28789228)

  • 1. Controllable photon and phonon localization in optomechanical Lieb lattices.
    Wan LL; Lü XY; Gao JH; Wu Y
    Opt Express; 2017 Jul; 25(15):17364-17374. PubMed ID: 28789228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Interference Induced Flat Band Localization in Bipartite Optomechanical Lattices.
    Wan LL; Lü XY; Gao JH; Wu Y
    Sci Rep; 2017 Nov; 7(1):15188. PubMed ID: 29123185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-path photon-phonon converter in optomechanical system at single-quantum level.
    Chen TY; Zhang WZ; Fang RZ; Hang CZ; Zhou L
    Opt Express; 2017 May; 25(10):10779-10790. PubMed ID: 28788767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unconventional phonon blockade via atom-photon-phonon interaction in hybrid optomechanical systems.
    Wang M; Yin TS; Sun ZY; Cheng HG; Zhan BF; Zheng LL
    Opt Express; 2022 Mar; 30(7):10251-10268. PubMed ID: 35472997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of a Localized Flat-Band State in a Photonic Lieb Lattice.
    Mukherjee S; Spracklen A; Choudhury D; Goldman N; Öhberg P; Andersson E; Thomson RR
    Phys Rev Lett; 2015 Jun; 114(24):245504. PubMed ID: 26196987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing.
    Zhou YR; Zhang QF; Liu FF; Han YH; Gao YP; Fan L; Zhang R; Cao C
    Opt Express; 2024 Jan; 32(2):2786-2803. PubMed ID: 38297799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice.
    Taie S; Ozawa H; Ichinose T; Nishio T; Nakajima S; Takahashi Y
    Sci Adv; 2015 Nov; 1(10):e1500854. PubMed ID: 26665167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ag
    Yang T; Luo YZ; Wang Z; Zhu T; Pan H; Wang S; Lau SP; Feng YP; Yang M
    Nanoscale; 2021 Sep; 13(33):14008-14015. PubMed ID: 34477681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental realization and characterization of an electronic Lieb lattice.
    Slot MR; Gardenier TS; Jacobse PH; van Miert GCP; Kempkes SN; Zevenhuizen SJM; Smith CM; Vanmaekelbergh D; Swart I
    Nat Phys; 2017 Jul; 13(7):672-676. PubMed ID: 28706560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium.
    Liang S; Liu Z; Ning S; Zhang Y; Zhang Z
    Opt Lett; 2023 Feb; 48(3):803-806. PubMed ID: 36723593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism.
    Jiang W; Huang H; Liu F
    Nat Commun; 2019 May; 10(1):2207. PubMed ID: 31101812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism.
    Cui B; Zheng X; Wang J; Liu D; Xie S; Huang B
    Nat Commun; 2020 Jan; 11(1):66. PubMed ID: 31898693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving.
    Yin TS; Lü XY; Wan LL; Bin SW; Wu Y
    Opt Lett; 2018 May; 43(9):2050-2053. PubMed ID: 29714743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Realization of Two-Dimensional Buckled Lieb Lattice.
    Feng H; Liu C; Zhou S; Gao N; Gao Q; Zhuang J; Xu X; Hu Z; Wang J; Chen L; Zhao J; Dou SX; Du Y
    Nano Lett; 2020 Apr; 20(4):2537-2543. PubMed ID: 32182079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling.
    Whittaker CE; Cancellieri E; Walker PM; Gulevich DR; Schomerus H; Vaitiekus D; Royall B; Whittaker DM; Clarke E; Iorsh IV; Shelykh IA; Skolnick MS; Krizhanovskii DN
    Phys Rev Lett; 2018 Mar; 120(9):097401. PubMed ID: 29547302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of Localized States in Lieb Photonic Lattices.
    Vicencio RA; Cantillano C; Morales-Inostroza L; Real B; Mejía-Cortés C; Weimann S; Szameit A; Molina MI
    Phys Rev Lett; 2015 Jun; 114(24):245503. PubMed ID: 26196986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic
    Zhang Y; Zhao S; Položij M; Heine T
    Chem Sci; 2024 Apr; 15(15):5757-5763. PubMed ID: 38638224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Coupling of Rydberg Atoms and Surface Phonon Polaritons on Piezoelectric Superlattices.
    Sheng J; Chao Y; Shaffer JP
    Phys Rev Lett; 2016 Sep; 117(10):103201. PubMed ID: 27636473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact localized states in magnonic Lieb lattices.
    Centała G; Kłos JW
    Sci Rep; 2023 Aug; 13(1):12676. PubMed ID: 37542063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solitons in optomechanical arrays.
    Gan JH; Xiong H; Si LG; Lü XY; Wu Y
    Opt Lett; 2016 Jun; 41(12):2676-9. PubMed ID: 27304261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.