These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28789238)

  • 41. A convolutional learning system for object classification in 3-D Lidar data.
    Prokhorov D
    IEEE Trans Neural Netw; 2010 May; 21(5):858-63. PubMed ID: 20350849
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Data-Driven Object Pose Estimation in a Practical Bin-Picking Application.
    Kozák V; Sushkov R; Kulich M; Přeučil L
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577303
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Displacement-agnostic coherent imaging through scatter with an interpretable deep neural network.
    Li Y; Cheng S; Xue Y; Tian L
    Opt Express; 2021 Jan; 29(2):2244-2257. PubMed ID: 33726423
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-line-of-sight imaging and tracking of moving objects based on deep learning.
    He J; Wu S; Wei R; Zhang Y
    Opt Express; 2022 May; 30(10):16758-16772. PubMed ID: 36221512
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How does the brain rapidly learn and reorganize view-invariant and position-invariant object representations in the inferotemporal cortex?
    Cao Y; Grossberg S; Markowitz J
    Neural Netw; 2011 Dec; 24(10):1050-61. PubMed ID: 21596523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification.
    Kumar A; Kim J; Lyndon D; Fulham M; Feng D
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):31-40. PubMed ID: 28114041
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PI-NLOS: polarized infrared non-line-of-sight imaging.
    Liu H; Wang P; He X; Chen M; Liu M; Xu Z; Jiang X; Peng X; Xu M
    Opt Express; 2023 Dec; 31(26):44113-44126. PubMed ID: 38178490
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Weighted similarity-invariant linear algorithm for camera calibration with rotating 1D objects.
    Shi K; Dong Q; Wu F
    IEEE Trans Image Process; 2012 Aug; 21(8):3806-12. PubMed ID: 22531762
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robust metamodel-based inverse estimation of bulk optical properties of turbid media from spatially resolved diffuse reflectance measurements.
    Watté R; Aernouts B; Van Beers R; Saeys W
    Opt Express; 2015 Oct; 23(21):27880-98. PubMed ID: 26480447
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A variational approach to problems in calibration of multiple cameras.
    Unal G; Yezzi A; Soatto S; Slabaugh G
    IEEE Trans Pattern Anal Mach Intell; 2007 Aug; 29(8):1322-38. PubMed ID: 17568138
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Precise Measurement of Position and Attitude Based on Convolutional Neural Network and Visual Correspondence Relationship.
    Yang J; Man J; Xi M; Gao X; Lu W; Meng Q
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):2030-2041. PubMed ID: 31449032
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep Non-Line-of-Sight Imaging Using Echolocation.
    Jang S; Shin UH; Kim K
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On-orbit calibration approach for optical navigation camera in deep space exploration.
    Wang M; Cheng Y; Yang B; Jin S; Su H
    Opt Express; 2016 Mar; 24(5):5536-5554. PubMed ID: 29092376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient non-line-of-sight tracking with computational neuromorphic imaging.
    Zhu S; Ge Z; Wang C; Han J; Lam EY
    Opt Lett; 2024 Jul; 49(13):3584-3587. PubMed ID: 38950215
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling.
    Tang S; Zhu Q; Chen W; Darwish W; Wu B; Hu H; Chen M
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Imaging through thick scattering media based on envelope-informed learning with a simulated training dataset.
    Wang B; Shi Y; Sheng W; Zhang M; Liu Y
    Appl Opt; 2024 May; 63(15):4049-4056. PubMed ID: 38856497
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields.
    Liu F; Shen C; Lin G; Reid I
    IEEE Trans Pattern Anal Mach Intell; 2016 Oct; 38(10):2024-39. PubMed ID: 26660697
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images.
    van Grinsven MJ; van Ginneken B; Hoyng CB; Theelen T; Sanchez CI
    IEEE Trans Med Imaging; 2016 May; 35(5):1273-1284. PubMed ID: 26886969
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep-learning projector for optical diffraction tomography.
    Yang F; Pham TA; Gupta H; Unser M; Ma J
    Opt Express; 2020 Feb; 28(3):3905-3921. PubMed ID: 32122051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.
    Cai C; Rodet T; Legoupil S; Mohammad-Djafari A
    Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.