These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28789249)

  • 1. High-speed near-field photolithography at 16.85 nm linewidth with linearly polarized illumination.
    Ji J; Meng Y; Hu Y; Xu J; Li S; Yang G
    Opt Express; 2017 Jul; 25(15):17571-17580. PubMed ID: 28789249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of a plasmonic radially polarized vector beam with linearly polarized illumination.
    Zhang YQ; Zeng XY; Zhang RR; Zhan ZJ; Li X; Ma L; Liu CX; He CW; Cheng CF
    Opt Lett; 2018 Sep; 43(17):4208-4211. PubMed ID: 30160753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic focusing in spiral nanostructures under linearly polarized illumination.
    Li J; Yang C; Zhao H; Lin F; Zhu X
    Opt Express; 2014 Jul; 22(14):16686-93. PubMed ID: 25090487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD.
    Jia B; Gan X; Gu M
    Opt Express; 2005 Sep; 13(18):6821-7. PubMed ID: 19498699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics.
    Yoon YJ; Kim WC; Park NC; Park KS; Park YP
    Opt Lett; 2009 Jul; 34(13):1961-3. PubMed ID: 19571966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna.
    Mao L; Ren Y; Lu Y; Lei X; Jiang K; Li K; Wang Y; Cui C; Wen X; Wang P
    Sci Rep; 2016 Mar; 6():23751. PubMed ID: 27009383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light.
    Lerman GM; Yanai A; Levy U
    Nano Lett; 2009 May; 9(5):2139-43. PubMed ID: 19391611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maskless plasmonic lithography at 22 nm resolution.
    Pan L; Park Y; Xiong Y; Ulin-Avila E; Wang Y; Zeng L; Xiong S; Rho J; Sun C; Bogy DB; Zhang X
    Sci Rep; 2011; 1():175. PubMed ID: 22355690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-one-third wavelength focusing of surface plasmon polaritons excited by linearly polarized light.
    Wang J; Zhang J
    Opt Express; 2018 May; 26(11):14626-14635. PubMed ID: 29877497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation.
    Yanai A; Grajower M; Lerman GM; Hentschel M; Giessen H; Levy U
    ACS Nano; 2014 May; 8(5):4969-74. PubMed ID: 24758590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional nanoscale far-field focusing of radially polarized light by scattering the SPPs with an annular groove.
    Zhang M; Du J; Shi H; Yin S; Xia L; Jia B; Gu M; Du C
    Opt Express; 2010 Jul; 18(14):14664-70. PubMed ID: 20639952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microlens-aided focusing of linearly and azimuthally polarized laser light.
    Stafeev SS; Nalimov AG; Kotlyar MV; Gibson D; Song S; O'Faolain L; Kotlyar VV
    Opt Express; 2016 Dec; 24(26):29800-29813. PubMed ID: 28059366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface.
    Zhang F; Yu H; Fang J; Zhang M; Chen S; Wang J; He A; Chen J
    Opt Express; 2016 Mar; 24(6):6656-64. PubMed ID: 27136854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tight focus of light using micropolarizer and microlens.
    Stafeev SS; O'Faolain L; Kotlyar VV; Nalimov AG
    Appl Opt; 2015 May; 54(14):4388-94. PubMed ID: 25967493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of a periodic array of radially polarized Plasmonic focal spots.
    Bar-David J; Lerman GM; Stern L; Mazurski N; Levy U
    Opt Express; 2013 Feb; 21(3):3746-55. PubMed ID: 23481831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enlarging focal depth using epsilon-near-zero metamaterial for plasmonic lithography.
    Jin Q; Liang G; Chen G; Zhao F; Yan S; Zhang K; Yang M; Zhang Q; Wen Z; Zhang Z
    Opt Lett; 2020 Jun; 45(11):3159-3162. PubMed ID: 32479484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens.
    Venugopalan P; Zhang Q; Li X; Kuipers L; Gu M
    Opt Lett; 2014 Oct; 39(19):5744-7. PubMed ID: 25360974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tight focusing with a binary microaxicon.
    Kotlyar VV; Stafeev SS; O'Faolain L; Soifer VA
    Opt Lett; 2011 Aug; 36(16):3100-2. PubMed ID: 21847173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical phase and surface plasmon focusing with azimuthal polarization.
    Chen W; Nelson RL; Zhan Q
    Opt Lett; 2012 Feb; 37(4):581-3. PubMed ID: 22344113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system.
    Ji J; Hu Y; Meng Y; Zhang J; Xu J; Li S; Yang G
    Nanotechnology; 2016 May; 27(18):185303. PubMed ID: 27010406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.