These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28789262)

  • 1. Effective W-state fusion strategies in nitrogen-vacancy centers via coupling to microtoroidal resonators.
    Han X; Guo Q; Zhu AD; Zhang S; Wang HF
    Opt Express; 2017 Jul; 25(15):17701-17712. PubMed ID: 28789262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system.
    Han X; Hu S; Guo Q; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2015 Aug; 5():12790. PubMed ID: 26242356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator.
    Cheng LY; Wang HF; Zhang S; Yeon KH
    Opt Express; 2013 Mar; 21(5):5988-97. PubMed ID: 23482167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of nonlocal entanglement of two-qubit spin quantum states.
    Cheng LY; Yang GH; Guo Q; Wang HF; Zhang S
    Sci Rep; 2016 Jan; 6():19482. PubMed ID: 26778340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of entangled states with nitrogen-vacancy centers coupled to microtoroidal resonators.
    Ji YQ; Shao XQ; Yi XX
    Opt Express; 2017 Jul; 25(14):15806-15817. PubMed ID: 28789093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementations of two-photon four-qubit Toffoli and Fredkin gates assisted by nitrogen-vacancy centers.
    Wei HR; Zhu PJ
    Sci Rep; 2016 Oct; 6():35529. PubMed ID: 27774994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities.
    Wei HR; Long GL
    Sci Rep; 2015 Aug; 5():12918. PubMed ID: 26271899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent spin control of a nanocavity-enhanced qubit in diamond.
    Li L; Schröder T; Chen EH; Walsh M; Bayn I; Goldstein J; Gaathon O; Trusheim ME; Lu M; Mower J; Cotlet M; Markham ML; Twitchen DJ; Englund D
    Nat Commun; 2015 Jan; 6():6173. PubMed ID: 25629223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications.
    Liu T; Guo BQ; Yu CS; Zhang WN
    Opt Express; 2018 Feb; 26(4):4498-4511. PubMed ID: 29475300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entangled absorption of a single photon with a single spin in diamond.
    Kosaka H; Niikura N
    Phys Rev Lett; 2015 Feb; 114(5):053603. PubMed ID: 25699440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General hyperconcentration of photonic polarization-time-bin hyperentanglement assisted by nitrogen-vacancy centers coupled to resonators.
    Du FF; Deng FG; Long GL
    Sci Rep; 2016 Nov; 6():35922. PubMed ID: 27804973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entanglement between a Diamond Spin Qubit and a Photonic Time-Bin Qubit at Telecom Wavelength.
    Tchebotareva A; Hermans SLN; Humphreys PC; Voigt D; Harmsma PJ; Cheng LK; Verlaan AL; Dijkhuizen N; de Jong W; Dréau A; Hanson R
    Phys Rev Lett; 2019 Aug; 123(6):063601. PubMed ID: 31491180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splitting an Arbitrary Three-Qubit State via a Five-Qubit Cluster State and a Bell State.
    Xu G; Zhou T; Chen XB; Wang X
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides.
    Lemonde MA; Meesala S; Sipahigil A; Schuetz MJA; Lukin MD; Loncar M; Rabl P
    Phys Rev Lett; 2018 May; 120(21):213603. PubMed ID: 29883171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entanglement dynamics for three nitrogen-vacancy centers coupled to a whispering-gallery-mode microcavity.
    Song W; Yang W; Chen Q; Hou Q; Feng M
    Opt Express; 2015 Jun; 23(11):13734-51. PubMed ID: 26072746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical control of entanglement and coherence for polar molecules in pendular states.
    Zhang ZY; Liu JM; Hu Z; Wang Y
    Opt Express; 2019 Sep; 27(19):26588-26599. PubMed ID: 31674537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator.
    Liu S; Li J; Yu R; Wu Y
    Opt Express; 2013 Feb; 21(3):3501-15. PubMed ID: 23481808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent feedback control of a single qubit in diamond.
    Hirose M; Cappellaro P
    Nature; 2016 Apr; 532(7597):77-80. PubMed ID: 27078567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits.
    Marcos D; Wubs M; Taylor JM; Aguado R; Lukin MD; Sørensen AS
    Phys Rev Lett; 2010 Nov; 105(21):210501. PubMed ID: 21231275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.