BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28789281)

  • 1. Arrayed waveguide grating spectrometers for astronomical applications: new results.
    Gatkine P; Veilleux S; Hu Y; Bland-Hawthorn J; Dagenais M
    Opt Express; 2017 Jul; 25(15):17918-17935. PubMed ID: 28789281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient ultra-broadband low-resolution astrophotonic spectrographs.
    Gatkine P; Sercel G; Jovanovic N; Broeke R; Ławniczuk K; Passoni M; Balakrishnan A; Bidnyk S; Yin J; Jewell J; Wallace JK; Mawet D
    Opt Express; 2024 May; 32(10):17689-17703. PubMed ID: 38858945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and implementation of a Si
    Zhan J; Zhang Y; Hsu WL; Veilleux S; Dagenais M
    Opt Express; 2023 Feb; 31(4):6389-6400. PubMed ID: 36823896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, simulation and characterization of integrated photonic spectrographs for astronomy: generation-I AWG devices based on canonical layouts.
    Stoll A; Madhav KV; Roth MM
    Opt Express; 2021 Aug; 29(16):24947-24971. PubMed ID: 34614838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides.
    Dai D; Wang Z; Bauters JF; Tien MC; Heck MJ; Blumenthal DJ; Bowers JE
    Opt Express; 2011 Jul; 19(15):14130-6. PubMed ID: 21934775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, simulation and characterization of integrated photonic spectrographs for astronomy II: low-aberration Generation-II AWG devices with three stigmatic points.
    Stoll A; Madhav K; Roth M
    Opt Express; 2021 Oct; 29(22):36226-36241. PubMed ID: 34809039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact ultrabroad-bandwidth cascaded arrayed waveguide gratings.
    van Wijk A; Doerr CR; Ali Z; Karabiyik M; Akca BI
    Opt Express; 2020 May; 28(10):14618-14626. PubMed ID: 32403499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of commercial SiN MPW platforms for developing mid/high-resolution integrated photonic spectrographs for astronomy.
    Gatkine P; Jovanovic N; Hopgood C; Ellis S; Broeke R; Ławniczuk K; Jewell J; Wallace JK; Mawet D
    Appl Opt; 2021 Jul; 60(19):D15-D32. PubMed ID: 34263825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon arrayed waveguide gratings at 2.0-μm wavelength characterized with an on-chip resonator.
    Stanton EJ; Volet N; Bowers JE
    Opt Lett; 2018 Mar; 43(5):1135-1138. PubMed ID: 29489798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-insensitive silicon nitride arrayed waveguide grating.
    Han Q; St-Yves J; Chen Y; Ménard M; Shi W
    Opt Lett; 2019 Aug; 44(16):3976-3979. PubMed ID: 31415526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-crosstalk Si arrayed waveguide grating with parabolic tapers.
    Ye T; Fu Y; Qiao L; Chu T
    Opt Express; 2014 Dec; 22(26):31899-906. PubMed ID: 25607158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D integrated wavelength demultiplexer based on a square-core fiber and dual-layer arrayed waveguide gratings.
    Jiang X; Yang Z; Liu Z; Dang Z; Ding Z; Chang Q; Zhang Z
    Opt Express; 2021 Jan; 29(2):2090-2098. PubMed ID: 33726409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel concept for visible and near infrared spectro-interferometry: laser-written layered arrayed waveguide gratings.
    Douglass G; Arriola A; Heras I; Martin G; Le Coarer E; Gross S; Withford MJ
    Opt Express; 2018 Jul; 26(14):18470-18479. PubMed ID: 30114026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology.
    Wang J; Sheng Z; Li L; Pang A; Wu A; Li W; Wang X; Zou S; Qi M; Gan F
    Opt Express; 2014 Apr; 22(8):9395-403. PubMed ID: 24787827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-loss demonstration and refined characterization of silicon arrayed waveguide gratings in the near-infrared.
    Stanton EJ; Volet N; Bowers JE
    Opt Express; 2017 Nov; 25(24):30651-30663. PubMed ID: 29221093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon Nanowire-Assisted High Uniform Arrayed Waveguide Grating.
    Yuan S; Feng J; Yu Z; Chen J; Liu H; Chen Y; Guo S; Huang F; Akimoto R; Zeng H
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved arrayed-waveguide-grating layout avoiding systematic phase errors.
    Ismail N; Sun F; Sengo G; Wörhoff K; Driessen A; de Ridder RM; Pollnau M
    Opt Express; 2011 Apr; 19(9):8781-94. PubMed ID: 21643130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and fabrication of polarization-insensitive hybrid solgel arrayed waveguide gratings.
    Park SR; Jeong J; O BH; Lee SG; Lee el-H
    Opt Lett; 2003 Mar; 28(6):381-3. PubMed ID: 12659253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared spectroscopy of low-transmittance samples by a high-power time-stretch spectrometer using an arrayed waveguide grating (AWG).
    Kawagoe H; Sera H; Sahara J; Akai S; Watanabe K; Shinoyama K; Nagashima T; Yokoyama T; Ikarashi A; Yamada G
    Sci Rep; 2023 Oct; 13(1):17261. PubMed ID: 37828139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance improvement for silicon-based arrayed waveguide grating router.
    Zou J; Le Z; Hu J; He JJ
    Opt Express; 2017 May; 25(9):9963-9973. PubMed ID: 28468375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.