These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28789554)

  • 1. Adaptive coarse graining method for energy transfer and dissociation kinetics of polyatomic species.
    Sahai A; Lopez B; Johnston CO; Panesi M
    J Chem Phys; 2017 Aug; 147(5):054107. PubMed ID: 28789554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.
    Liu Y; Panesi M; Sahai A; Vinokur M
    J Chem Phys; 2015 Apr; 142(13):134109. PubMed ID: 25854230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method.
    Macdonald RL; Grover MS; Schwartzentruber TE; Panesi M
    J Chem Phys; 2018 Feb; 148(5):054310. PubMed ID: 29421878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a coarse-grain quasi-classical trajectory method. I. Theory and application to N
    Macdonald RL; Jaffe RL; Schwenke DW; Panesi M
    J Chem Phys; 2018 Feb; 148(5):054309. PubMed ID: 29421898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principal component analysis acceleration of rovibrational coarse-grain models for internal energy excitation and dissociation.
    Bellemans A; Parente A; Magin T
    J Chem Phys; 2018 Apr; 148(16):164107. PubMed ID: 29716206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of state-resolved rovibrational coarse-grain model for nitrogen to stochastic particle method for simulating internal energy excitation and dissociation.
    Torres E; Magin TE
    J Chem Phys; 2018 Nov; 149(17):174106. PubMed ID: 30408979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows.
    Panesi M; Jaffe RL; Schwenke DW; Magin TE
    J Chem Phys; 2013 Jan; 138(4):044312. PubMed ID: 23387589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.
    Munafò A; Panesi M; Magin TE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023001. PubMed ID: 25353565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transfer models in nitrogen plasmas: analysis of N₂(X¹Σg⁺)-N(⁴S(u))-e⁻ interaction.
    Heritier KL; Jaffe RL; Laporta V; Panesi M
    J Chem Phys; 2014 Nov; 141(18):184302. PubMed ID: 25399142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-Inspired and Physics-Driven Model Reduction for Dissociation: Application to the O
    Venturi S; Sharma MP; Lopez B; Panesi M
    J Phys Chem A; 2020 Oct; 124(41):8359-8372. PubMed ID: 32886505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-grained modeling of thermochemical nonequilibrium using the multigroup maximum entropy quadratic formulation.
    Sharma MP; Liu Y; Panesi M
    Phys Rev E; 2020 Jan; 101(1-1):013307. PubMed ID: 32069613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale.
    McCarty J; Clark AJ; Copperman J; Guenza MG
    J Chem Phys; 2014 May; 140(20):204913. PubMed ID: 24880331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions.
    Bender JD; Valentini P; Nompelis I; Paukku Y; Varga Z; Truhlar DG; Schwartzentruber T; Candler GV
    J Chem Phys; 2015 Aug; 143(5):054304. PubMed ID: 26254650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rovibrational-Specific QCT and Master Equation Study on N
    Jo SM; Venturi S; Sharma MP; Munafò A; Panesi M
    J Phys Chem A; 2022 Jun; 126(21):3273-3290. PubMed ID: 35604650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-to-State Master Equation and Direct Molecular Simulation Study of Energy Transfer and Dissociation for the N
    Macdonald RL; Torres E; Schwartzentruber TE; Panesi M
    J Phys Chem A; 2020 Sep; 124(35):6986-7000. PubMed ID: 32786989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rovibrational energy transfer and dissociation in O2-O collisions.
    Andrienko DA; Boyd ID
    J Chem Phys; 2016 Mar; 144(10):104301. PubMed ID: 26979687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium fluctuation relations for voltage coupling in membrane proteins.
    Kim I; Warshel A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2985-97. PubMed ID: 26290960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical mechanics of Beltrami flows in axisymmetric geometry: theory reexamined.
    Naso A; Monchaux R; Chavanis PH; Dubrulle B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066318. PubMed ID: 20866533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-graining errors and numerical optimization using a relative entropy framework.
    Chaimovich A; Shell MS
    J Chem Phys; 2011 Mar; 134(9):094112. PubMed ID: 21384955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials.
    Nelson T; Fernandez-Alberti S; Roitberg AE; Tretiak S
    Acc Chem Res; 2014 Apr; 47(4):1155-64. PubMed ID: 24673100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.