These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 28789614)
1. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. Yu R; Li D; Du X; Xia S; Liu C; Shi G BMC Genomics; 2017 Aug; 18(1):587. PubMed ID: 28789614 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomic analysis reveals the roles of ROS scavenging genes in response to cadmium in two pak choi cultivars. Yu R; Tang Y; Liu C; Du X; Miao C; Shi G Sci Rep; 2017 Aug; 7(1):9217. PubMed ID: 28835647 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptome analysis revealed key factors for differential cadmium transport and retention in roots of two contrasting peanut cultivars. Yu R; Ma Y; Li Y; Li X; Liu C; Du X; Shi G BMC Genomics; 2018 Dec; 19(1):938. PubMed ID: 30558537 [TBL] [Abstract][Full Text] [Related]
4. Variations in the accumulation and translocation of cadmium among pak choi cultivars as related to root morphology. Xia S; Deng R; Zhang Z; Liu C; Shi G Environ Sci Pollut Res Int; 2016 May; 23(10):9832-42. PubMed ID: 26856862 [TBL] [Abstract][Full Text] [Related]
5. The zinc-regulated protein (ZIP) family genes and glutathione s-transferase (GST) family genes play roles in Cd resistance and accumulation of pak choi (Brassica campestris ssp. chinensis). Wu X; Chen J; Yue X; Wei X; Zou J; Chen Y; Su N; Cui J Ecotoxicol Environ Saf; 2019 Nov; 183():109571. PubMed ID: 31446170 [TBL] [Abstract][Full Text] [Related]
6. [Accumulation and Translocation of Cd in Yu Y; Luo LY; Liu Z; Fu PN; Li HF Huan Jing Ke Xue; 2020 Feb; 41(2):962-969. PubMed ID: 32608758 [TBL] [Abstract][Full Text] [Related]
7. Study amino acid contents, plant growth variables and cell ultrastructural changes induced by cadmium stress between two contrasting cadmium accumulating cultivars of Brassica rapa ssp. chinensis L. (pak choi). Khan KY; Ali B; Stoffella PJ; Cui X; Yang X; Guo Y Ecotoxicol Environ Saf; 2020 Sep; 200():110748. PubMed ID: 32470678 [TBL] [Abstract][Full Text] [Related]
8. Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Yasmin Khan K; Ali B; Cui X; Feng Y; Yang X; Joseph Stoffella P Ecotoxicol Environ Saf; 2017 Jul; 141():129-138. PubMed ID: 28324819 [TBL] [Abstract][Full Text] [Related]
9. Variation in the BrHMA3 coding region controls natural variation in cadmium accumulation in Brassica rapa vegetables. Zhang L; Wu J; Tang Z; Huang XY; Wang X; Salt DE; Zhao FJ J Exp Bot; 2019 Oct; 70(20):5865-5878. PubMed ID: 31367770 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis reveals different mechanisms of selenite and selenate regulation of cadmium translocation in Brassica rapa. Yu Y; Wang Q; Wan Y; Huang Q; Li H J Hazard Mater; 2023 Jun; 452():131218. PubMed ID: 36934626 [TBL] [Abstract][Full Text] [Related]
11. BcMAF2 activates BcTEM1 and represses flowering in Pak-choi (Brassica rapa ssp. chinensis). Huang F; Liu T; Tang J; Duan W; Hou X Plant Mol Biol; 2019 May; 100(1-2):19-32. PubMed ID: 31001712 [TBL] [Abstract][Full Text] [Related]
12. Molecular dissection of cadmium-responsive transcriptome profile in a low-cadmium-accumulating cultivar of Brassica parachinensis. Zhou Q; Yang Y; Yang Z Ecotoxicol Environ Saf; 2019 Jul; 176():85-94. PubMed ID: 30921700 [TBL] [Abstract][Full Text] [Related]
13. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Wu Z; Zhao X; Sun X; Tan Q; Tang Y; Nie Z; Hu C Chemosphere; 2015 Jan; 119():1217-1223. PubMed ID: 25460764 [TBL] [Abstract][Full Text] [Related]
14. Identification and Functional Characterization of a Cold-Related Protein, BcHHP5, in Pak-Choi ( Wang J; Huang F; You X; Hou X Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30587842 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency. Chen C; Cao Q; Jiang Q; Li J; Yu R; Shi G BMC Plant Biol; 2019 Jan; 19(1):35. PubMed ID: 30665365 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis revealed pivotal transporters involved in the reduction of cadmium accumulation in pak choi (Brassica chinensis L.) by exogenous hydrogen-rich water. Wu X; Zhu ZB; Chen JH; Huang YF; Liu ZL; Zou JW; Chen YH; Su NN; Cui J Chemosphere; 2019 Feb; 216():684-697. PubMed ID: 30391890 [TBL] [Abstract][Full Text] [Related]
17. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. Tan M; Cheng D; Yang Y; Zhang G; Qin M; Chen J; Chen Y; Jiang M BMC Plant Biol; 2017 Nov; 17(1):194. PubMed ID: 29115926 [TBL] [Abstract][Full Text] [Related]
18. IRT1 and ZIP2 were involved in exogenous hydrogen-rich water-reduced cadmium accumulation in Brassica chinensis and Arabidopsis thaliana. Wu X; Su N; Yue X; Fang B; Zou J; Chen Y; Shen Z; Cui J J Hazard Mater; 2021 Apr; 407():124599. PubMed ID: 33360184 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Relative Electron Transport Rate Contributes to Increased Photosynthetic Capacity in Autotetraploid Pak Choi. Zhang C; Wang H; Xu Y; Zhang S; Wang J; Hu B; Hou X; Li Y; Liu T Plant Cell Physiol; 2020 Apr; 61(4):761-774. PubMed ID: 31904850 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomics analysis of peanut roots reveals differential mechanisms of cadmium detoxification and translocation between two cultivars differing in cadmium accumulation. Yu R; Jiang Q; Xv C; Li L; Bu S; Shi G BMC Plant Biol; 2019 Apr; 19(1):137. PubMed ID: 30975099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]