These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 28790363)
21. Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells. Yu P; Yao Y; Wu J; Niu X; Rogach AL; Wang Z Sci Rep; 2017 Aug; 7(1):7696. PubMed ID: 28794487 [TBL] [Abstract][Full Text] [Related]
22. Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires. Liu WF; Oh JI; Shen WZ Nanotechnology; 2011 Mar; 22(12):125705. PubMed ID: 21317497 [TBL] [Abstract][Full Text] [Related]
24. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes. Kawawaki T; Wang H; Kubo T; Saito K; Nakazaki J; Segawa H; Tatsuma T ACS Nano; 2015 Apr; 9(4):4165-72. PubMed ID: 25785476 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of Si/SiO Li X; Chen T; Zhou B; Liu G; Shi T; Wen L; Cao H; Wang Y Nanotechnology; 2017 May; 28(18):185402. PubMed ID: 28291014 [TBL] [Abstract][Full Text] [Related]
26. DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering. Zhan P; Wen T; Wang ZG; He Y; Shi J; Wang T; Liu X; Lu G; Ding B Angew Chem Int Ed Engl; 2018 Mar; 57(11):2846-2850. PubMed ID: 29377456 [TBL] [Abstract][Full Text] [Related]
27. Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index. Yue Z; Cai B; Wang L; Wang X; Gu M Sci Adv; 2016 Mar; 2(3):e1501536. PubMed ID: 27051869 [TBL] [Abstract][Full Text] [Related]
28. Noble metal nanowires: from plasmon waveguides to passive and active devices. Lal S; Hafner JH; Halas NJ; Link S; Nordlander P Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053 [TBL] [Abstract][Full Text] [Related]
29. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al₂O₃ spacer layer. Ren QH; Zhang Y; Lu HL; Chen HY; Zhang Y; Li DH; Liu WJ; Ding SJ; Jiang AQ; Zhang DW Nanotechnology; 2016 Apr; 27(16):165705. PubMed ID: 26963868 [TBL] [Abstract][Full Text] [Related]
30. The shell effect on the room temperature photoluminescence from ZnO/MgO core/shell nanowires: exciton-phonon coupling and strain. Vega NC; Marin O; Tosi E; Grinblat G; Mosquera E; Moreno MS; Tirado M; Comedi D Nanotechnology; 2017 Jul; 28(27):275702. PubMed ID: 28525395 [TBL] [Abstract][Full Text] [Related]
31. Photoluminescence enhancement of ZnO nanowire arrays by atomic layer deposition of ZrO2 layers and thermal annealing. Zhang Y; Lu HL; Wang T; Ren QH; Chen HY; Zhang H; Ji XM; Liu WJ; Ding SJ; Zhang DW Phys Chem Chem Phys; 2016 Jun; 18(24):16377-85. PubMed ID: 27263423 [TBL] [Abstract][Full Text] [Related]
32. Synergistic Effects of Localized Surface Plasmon Resonance, Surface Plasmon Polariton, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhance Organic Solar Cell Efficiency. Ibrahim Zamkoye I; Lucas B; Vedraine S Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570526 [TBL] [Abstract][Full Text] [Related]
33. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes. Wang F; Seo JH; Li Z; Kvit AV; Ma Z; Wang X ACS Appl Mater Interfaces; 2014 Jan; 6(2):1288-93. PubMed ID: 24383705 [TBL] [Abstract][Full Text] [Related]
34. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. Li Z; Butun S; Aydin K ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803 [TBL] [Abstract][Full Text] [Related]
35. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires. Mokkapati S; Saxena D; Tan HH; Jagadish C Small; 2013 Dec; 9(23):3964-9. PubMed ID: 23757173 [TBL] [Abstract][Full Text] [Related]
36. Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping. Xiong F; Zhang J; Zhu Z; Yuan X; Qin S Sci Rep; 2015 Nov; 5():16998. PubMed ID: 26582477 [TBL] [Abstract][Full Text] [Related]
37. Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core-Shell Plasmonic Particles. Malekshahi Byranvand M; Nemati Kharat A; Taghavinia N; Dabirian A ACS Appl Mater Interfaces; 2016 Jun; 8(25):16359-67. PubMed ID: 27300764 [TBL] [Abstract][Full Text] [Related]
38. Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells. Luo Q; Zhang C; Deng X; Zhu H; Li Z; Wang Z; Chen X; Huang S ACS Appl Mater Interfaces; 2017 Oct; 9(40):34821-34832. PubMed ID: 28929738 [TBL] [Abstract][Full Text] [Related]
39. Fast-Response Single-Nanowire Photodetector Based on ZnO/WS Butanovs E; Vlassov S; Kuzmin A; Piskunov S; Butikova J; Polyakov B ACS Appl Mater Interfaces; 2018 Apr; 10(16):13869-13876. PubMed ID: 29619827 [TBL] [Abstract][Full Text] [Related]