These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28790382)

  • 1. Gold-rich ligament nanostructure by dealloying Au-based metallic glass ribbon for surface-enhanced Raman scattering.
    Chao BK; Xu Y; Ho HC; Yiu P; Lai YC; Shek CH; Hsueh CH
    Sci Rep; 2017 Aug; 7(1):7485. PubMed ID: 28790382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering.
    Lu G; Li H; Wu S; Chen P; Zhang H
    Nanoscale; 2012 Feb; 4(3):860-3. PubMed ID: 22159183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled gold micro/nanostructure arrays based on superionic conductor RbAg
    Wang PF; Liu Y; Yin J; Ma W; Zhu JL; Dong Z; Sun JL
    Nanotechnology; 2019 Jan; 30(2):025602. PubMed ID: 30411715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile One-Pot Synthesis of Nanodot-Decorated Gold-Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity.
    Li J; Zhang G; Wang J; Maksymov IS; Greentree AD; Hu J; Shen A; Wang Y; Trau M
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32526-32535. PubMed ID: 30168708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.
    Lee S; Ongko A; Kim HY; Yim SG; Jeon G; Jeong HJ; Lee S; Kwak M; Yang SY
    Nanotechnology; 2016 Aug; 27(31):315301. PubMed ID: 27334794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly effective and chemically stable surface enhanced Raman scattering substrates with flower-like 3D Ag-Au hetero-nanostructures.
    Zhang Y; Yang C; Xue B; Peng Z; Cao Z; Mu Q; Xuan L
    Sci Rep; 2018 Jan; 8(1):898. PubMed ID: 29343742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive Surface-Enhanced Raman Scattering Detection Using On-Demand Postassembled Particle-on-Film Structure.
    Wang X; Zhu X; Chen Y; Zheng M; Xiang Q; Tang Z; Zhang G; Duan H
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31102-31110. PubMed ID: 28832109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering.
    Chen LY; Yang KH; Chen HC; Liu YC; Chen CH; Chen QY
    Analyst; 2014 Apr; 139(8):1929-37. PubMed ID: 24575422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering.
    Liao Q; Mu C; Xu DS; Ai XC; Yao JN; Zhang JP
    Langmuir; 2009 Apr; 25(8):4708-14. PubMed ID: 19366228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate.
    Zhang C; Yi P; Peng L; Lai X; Chen J; Huang M; Ni J
    Sci Rep; 2017 Jan; 7():39814. PubMed ID: 28051175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot spots by polyaniline template-assisted self-assembly.
    Qian K; Liu H; Yang L; Liu J
    Nanoscale; 2012 Oct; 4(20):6449-54. PubMed ID: 22955203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate.
    Guo Q; Xu M; Yuan Y; Gu R; Yao J
    Langmuir; 2016 May; 32(18):4530-7. PubMed ID: 27101361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold Film over SiO
    Kouba K; Proška J; Procházka M
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31600895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications.
    Singh P; König TAF; Jaiswal A
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39380-39390. PubMed ID: 30345737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S; Ahn M; Kim J
    Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins.
    Liu Z; Cheng L; Zhang L; Jing C; Shi X; Yang Z; Long Y; Fang J
    Nanoscale; 2014 Mar; 6(5):2567-72. PubMed ID: 24463635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform distribution of Ag particles upon imprinted polymer grating for Raman signal enhancement.
    Daniel S; Matikainen A; Turunen J; Vahimaa P; Nuutinen T
    J Colloid Interface Sci; 2015 Jan; 437():119-123. PubMed ID: 25313474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.