These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28790392)

  • 21. Durability and restoring of superhydrophobic properties in silica-based coatings.
    Mahadik SA; Fernando PD; Hegade ND; Wagh PB; Gupta SC
    J Colloid Interface Sci; 2013 Sep; 405():262-8. PubMed ID: 23746435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly.
    Dong F; Zhang M; Tang WW; Wang Y
    J Phys Chem B; 2015 Apr; 119(16):5321-7. PubMed ID: 25835644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembled biomimetic superhydrophobic CaCO3 coating inspired from fouling mineralization in geothermal water.
    Wang GG; Zhu LQ; Liu HC; Li WP
    Langmuir; 2011 Oct; 27(20):12275-9. PubMed ID: 21919516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Candle soot-based super-amphiphobic coatings resist protein adsorption.
    Schmüser L; Encinas N; Paven M; Graham DJ; Castner DG; Vollmer D; Butt HJ; Weidner T
    Biointerphases; 2016 Sep; 11(3):031007. PubMed ID: 27460261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-pot preparation of fluorinated mesoporous silica nanoparticles for liquid marble formation and superhydrophobic surfaces.
    Yildirim A; Budunoglu H; Daglar B; Deniz H; Bayindir M
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1804-8. PubMed ID: 21574636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.
    Goswami D; Medda SK; De G
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3440-7. PubMed ID: 21823656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superhydrophobic candle soot/PDMS substrate for one-step enrichment and desalting of peptides in MALDI MS analysis.
    Wang X; Li N; Xu D; Yang X; Zhu Q; Xiao D; Lu N
    Talanta; 2018 Dec; 190():23-29. PubMed ID: 30172504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biopolymer assisted synthesis of silica-carbon composite by spray drying.
    Sarkar D; Sen D; Nayak BK; Bhatt P; Deo MN; Dutta B
    Colloids Surf B Biointerfaces; 2018 May; 165():182-190. PubMed ID: 29482129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of Assembled Carbon Soot Films and Hydrophobic Properties.
    Zhao L; Zhao K; Yan WG; Liu Z
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30463186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water interaction with hydrophobic and hydrophilic soot particles.
    Popovicheva O; Persiantseva NM; Shonija NK; DeMott P; Koehler K; Petters M; Kreidenweis S; Tishkova V; Demirdjian B; Suzanne J
    Phys Chem Chem Phys; 2008 May; 10(17):2332-44. PubMed ID: 18414725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetric Superhydrophobic/Superhydrophilic Cotton Fabrics Designed by Spraying Polymer and Nanoparticles.
    Sasaki K; Tenjimbayashi M; Manabe K; Shiratori S
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):651-9. PubMed ID: 26595458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, characterization, and electrochemical applications of carbon nanoparticles derived from castor oil soot.
    Prasad KS; Chuang MC; Ho JA
    Talanta; 2012 Jan; 88():445-9. PubMed ID: 22265524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superhydrophobic photothermal icephobic surfaces based on candle soot.
    Wu S; Du Y; Alsaid Y; Wu D; Hua M; Yan Y; Yao B; Ma Y; Zhu X; He X
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11240-11246. PubMed ID: 32393646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.
    Nie C; Yang Y; Cheng C; Ma L; Deng J; Wang L; Zhao C
    Acta Biomater; 2017 Mar; 51():479-494. PubMed ID: 28082114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellulose nanofiber assisted dispersion of hydrophobic SiO
    Chen X; Huang Y; Zhang L; Liu J; Wang C; Wu M
    Carbohydr Polym; 2022 Aug; 290():119504. PubMed ID: 35550757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling the wettability of plastic by thermally embedding coated aluminium oxide nanoparticles into the surface.
    Hill D; Barron AR; Alexander S
    J Colloid Interface Sci; 2020 May; 567():45-53. PubMed ID: 32035393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films.
    Brassard JD; Sarkar DK; Perron J
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3583-8. PubMed ID: 21870871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Durable Superhydrophobic Surfaces Prepared by Spray Coating of Polymerized Organosilane/Attapulgite Nanocomposites.
    Li B; Zhang J; Wu L; Wang A
    Chempluschem; 2013 Dec; 78(12):1503-1509. PubMed ID: 31986656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of superhydrophobic electrospun nanocomposite fibers for energy systems.
    Asmatulu R; Ceylan M; Nuraje N
    Langmuir; 2011 Jan; 27(2):504-7. PubMed ID: 21171580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.