BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 28790397)

  • 1. Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study.
    Zheng YZ; Deng G; Liang Q; Chen DF; Guo R; Lai RC
    Sci Rep; 2017 Aug; 7(1):7543. PubMed ID: 28790397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis.
    Zheng YZ; Chen DF; Deng G; Guo R; Fu ZM
    Phytochemistry; 2018 Dec; 156():184-192. PubMed ID: 30312934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones.
    Wang G; Xue Y; An L; Zheng Y; Dou Y; Zhang L; Liu Y
    Food Chem; 2015 Mar; 171():89-97. PubMed ID: 25308647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study on the antioxidant properties of 2'-hydroxychalcones: H-atom vs. electron transfer mechanism.
    Xue Y; Zheng Y; Zhang L; Wu W; Yu D; Liu Y
    J Mol Model; 2013 Sep; 19(9):3851-62. PubMed ID: 23801254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid.
    Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF
    Phytochemistry; 2019 Apr; 160():19-24. PubMed ID: 30669059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The surrounding environments on the structure and antioxidative activity of luteolin.
    Zheng YZ; Chen DF; Deng G; Guo R; Fu ZM
    J Mol Model; 2018 Jun; 24(7):149. PubMed ID: 29869725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the relative contribution of quercetin and its glucosides to the antioxidant capacity of onion by cyclic voltammetry and spectrophotometric methods.
    Zielinska D; Wiczkowski W; Piskula MK
    J Agric Food Chem; 2008 May; 56(10):3524-31. PubMed ID: 18454541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the radical scavenging activity of isoflavones: thermodynamics of O-H bond cleavage.
    Lengyel J; Rimarčík J; Vagánek A; Klein E
    Phys Chem Chem Phys; 2013 Jul; 15(26):10895-903. PubMed ID: 23698223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolysis of flavonoid glycosides by propolis β-glycosidase.
    Zhang CP; Liu G; Hu FL
    Nat Prod Res; 2012; 26(3):270-3. PubMed ID: 21851328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study.
    Menacer R; Rekkab S; Kabouche Z
    J Mol Model; 2022 Aug; 28(8):240. PubMed ID: 35913682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radical Scavenging Capability and Mechanism of Three Isoflavonoids Extracted from Radix Astragali: A Theoretical Study.
    Lu XQ; Qin S; Li J
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid.
    Shameera Ahamed TK; Rajan VK; Sabira K; Muraleedharan K
    Comput Biol Chem; 2019 Jun; 80():66-78. PubMed ID: 30928870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action.
    Klein E; Lukes V
    J Phys Chem A; 2006 Nov; 110(44):12312-20. PubMed ID: 17078630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical insight into the antioxidative activity of isoflavonoid: The effect of the C2=C3 double bond.
    Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF
    Phytochemistry; 2019 Oct; 166():112075. PubMed ID: 31351332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids.
    Marković S; Tošović J
    Food Chem; 2016 Nov; 210():585-92. PubMed ID: 27211685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O-(1 → 3) linkage flavonols.
    de Souza GL; de Oliveira LM; Vicari RG; Brown A
    J Mol Model; 2016 Apr; 22(4):100. PubMed ID: 27037824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DFT study on OH radical scavenging activities of eriodictyol, Isosakuranetin and pinocembrin.
    Erdoğan Ş; Özbakır Işın D
    J Biomol Struct Dyn; 2022; 40(21):10802-10811. PubMed ID: 34286668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PM6 study of free radical scavenging mechanisms of flavonoids: why does O-H bond dissociation enthalpy effectively represent free radical scavenging activity?
    Amić D; Stepanić V; Lučić B; Marković Z; Dimitrić Marković JM
    J Mol Model; 2013 Jun; 19(6):2593-603. PubMed ID: 23479282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regioselective formation of quercetin 5-O-glucoside from orally administered quercetin in the silkworm, Bombyx mori.
    Hirayama C; Ono H; Tamura Y; Konno K; Nakamura M
    Phytochemistry; 2008 Mar; 69(5):1141-9. PubMed ID: 18164738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitro- and amino-group on the antioxidant activity of genistein: A theoretical study.
    Wang L; Yang F; Zhao X; Li Y
    Food Chem; 2019 Mar; 275():339-345. PubMed ID: 30724205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.